中文版 | English
题名

组蛋白伴侣的鉴定与结构研究

其他题名
IDENTIFICATION AND STRUCTUAL STUDIES OF HISTONE CHAPERONES
姓名
姓名拼音
LI Yue
学号
11930751
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
黄鸿达
导师单位
化学生物学系
论文答辩日期
2023-05-16
论文提交日期
2023-07-10
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

真核生物的遗传信息存储在染色质中,染色质是由基本单位核小体经过多层次的压缩形成的一种高级结构。该结构可以有效地保护基因组的稳定性和完整性,有利于遗传信息的传递并保护其免受外界因素的破坏。为了保持染色质结构的完整性,需要对DNA复制、修复和基因转录等过程进行精细调控,这些过程伴随着核小体的组装、去组装和重新组装。作为核小体的核心成分,组蛋白在其伴侣的协助下完成多种代谢过程,维持核小体组装与去组装的动态平衡。因此,组蛋白伴侣是核小体和染色质结构动态调控的关键因素。目前,已知的组蛋白伴侣均来自于真核生物自身编码的蛋白质。虽然已经进行了大量研究,但仍需要进一步探究是否存在新的组蛋白伴侣以及它们的调控方式。已知某些病毒(例如EB病毒)编码的蛋白质可以与宿主细胞的染色质结合,并结合组蛋白。然而,病毒编码的蛋白质是否具有组蛋白伴侣功能以及其具体的分子机制仍需进一步揭示。

EB病毒是最常见的侵染人类的病毒之一,与多种疾病和恶性肿瘤相关。该病毒编码的间质蛋白BKRF4可以与宿主细胞的组蛋白结合。为了验证其是否具有组蛋白分子伴侣的活性,我们进行了质粒超螺旋实验和核小体组装实验,结果显示BKRF4是一种来自EBV的组蛋白伴侣。为了进一步揭示BKRF4的作用机制,我们利用晶体学的方法解析了BKRF4 HBD-H3–H4-ASF1B四元复合物的结构,以及BKRF4 HBD-H2A–H2B三元复合物的结构。结构和生化分析的结果表明,组蛋白伴侣BKRF4主要利用保守序列“EIDL”结合H3–H4。基于“EIDL”和MCM2识别组蛋白H3–H4的序列“DGEEL”之间的相似性,我们提出保守基序D/EL是一种新的结合H3–H4的基序。此外,我们发现BKRF4通过保守序列“DPSWHP”与H2A–H2B结合,在该序列中,保守的天冬氨酸(D)和色氨酸(W)分别作为酸性螺旋帽和芳香锚定残基,这与其他已知的H2A–H2B伴侣利用苯丙氨酸(F)或酪氨酸(Y)作为芳香锚有所不同。因此,我们的工作将组蛋白伴侣识别H2A–H2B的结合基序拓展为DEF/Y/W基序。此外,我们的研究还发现BKRF4可以作为组蛋白八聚体的伴侣,并提出了它调节核小体组装的模型。上述实验结果证明BKRF4是一种典型的非真核生物编码的组蛋白伴侣。

在复制叉处,组蛋白伴侣FACT和DNA聚合酶pol a和e可能利用与BKRF4识别组蛋白的相似序列来参与亲本组蛋白的回收,我们对它们识别组蛋白的结构基础进行了探究。我们首先聚焦在可能参与亲本组蛋白回收的人源组蛋白伴侣FACT复合物上。该复合物由Spt16和SSRP1组成,是一种多功能组蛋白伴侣,它可以结合H2A–H2B二聚体、H3–H4四聚体(或二聚体)以及部分解开的核小体,但是缺乏阐释人源Spt16的羧基末端(hSpt16 CTD)如何识别组蛋白H2A–H2B二聚体的结构信息。结构和生化研究发现,hSpt16-CTD利用保守序列“DETFNP”结合H2A–H2B,该序列是DEF/Y/W基序。基序下游的保守脯氨酸残基充当辅助锚,增强其对组蛋白H2A–H2B的结合,这与BKRF4结合H2A–H2B的结构基础相一致。hSpt16-CTD-H2A–H2B结构解释了在复制叉处FACT识别H2A–H2B的机制。在此基础上,我们对复制叉处的亲本组蛋白H3–H4的回收机制进行了初步探究,即亲本组蛋白被DNA聚合酶a和e的亚基POLA1与POLE3回收的结构基础。我们目前解析出的人源POLA1-H3–H4和POLE3-H3–H4的低分辨率初始结构模型,提示POLA1和POLE3也可能是利用保守的D/EL基序识别H3–H4。

综上所述,本论文首次解析了EBV编码的间质蛋白质BKRF4与组蛋白复合物的晶体结构,证明了BKRF4是一个组蛋白伴侣,揭示了非真核生物编码的第一个组蛋白伴侣。基于我们利用晶体学方法解析的BKRF4 HBD-H3–H4-ASF1B四元复合物的结构、BKRF4 HBD-H2A–H2B三元复合物的结构和hSpt16-CTD-H2A–H2B三元复合物的结构,以及氨基酸序列分析,我们提出了组蛋白伴侣靶向H3–H4的全新保守基序D/EL基序,拓展了组蛋白伴侣识别H2A–H2B的保守基序为DEF/Y/W基序以及下游的脯氨酸残基为辅助锚,揭示了组蛋白伴侣识别组蛋白的共性。同时,我们也初步研究了亲本组蛋白被伴侣POLA1、POLE3回收的结构机理。我们的研究为组蛋白伴侣以及表观遗传研究领域提供了有价值的参考和启示。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] CLARET L, ROUVIERE-YANIV J. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival[J]. J Mol Biol, 1997, 273(1): 93-104.
[2] HAMMEL M, AMLANJYOTI D, REYES F E, et al. HU multimerization shift controls nucleoid compaction[J]. Sci Adv, 2016, 2(7): e1600650.
[3] MATTIROLI F, BHATTACHARYYA S, DYER P N, et al. Structure of histone-based chromatin in Archaea[J]. Science, 2017, 357(6351): 609-612.
[4] BHATTACHARYYA S, MATTIROLI F, LUGER K. Archaeal DNA on the histone merry-go-round[J]. FEBS J, 2018, 285(17): 3168-3174.
[5] MARUYAMA H, HARWOOD J C, MOORE K M, et al. An alternative beads-on-a-string chromatin architecture in Thermococcus kodakarensis[J]. EMBO Rep, 2013, 14(8): 711-717.
[6] EA V, BAUDEMENT M O, LESNE A, et al. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization[J]. Genes (Basel), 2015, 6(3): 734-750.
[7] LUGER K, MäDER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution[J]. Nature, 1997, 389(6648): 251-260.
[8] GROTH A, ROCHA W, VERREAULT A, et al. Chromatin challenges during DNA replication and repair[J]. Cell, 2007, 128(4): 721-733.
[9] LUGER K, DECHASSA M L, TREMETHICK D J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?[J]. Nat Rev Mol Cell Biol, 2012, 13(7): 436-447.
[10] MCGINTY R K, TAN S. Nucleosome structure and function[J]. Chem Rev, 2015, 115(6): 2255-2273.
[11] ONUFRIEV A V, SCHIESSEL H. The nucleosome: from structure to function through physics[J]. Curr Opin Struct Biol, 2019, 56: 119-130.
[12] PARK Y J, LUGER K. Structure and function of nucleosome assembly proteins[J]. Biochem Cell Biol, 2006, 84(4): 549-558.
[13] ZHANG Y, SUN Z, JIA J, et al. Overview of Histone Modification[J]. Adv Exp Med Biol, 2021, 1283: 1-16.
[14] COSGROVE M S, BOEKE J D, WOLBERGER C. Regulated nucleosome mobility and the histone code[J]. Nat Struct Mol Biol, 2004, 11(11): 1037-1043.
[15] MARZLUFF W F, GONGIDI P, WOODS K R, et al. The human and mouse replication-dependent histone genes[J]. Genomics, 2002, 80(5): 487-498.
[16] SOKOLOVA V, SARKAR S, TAN D. Histone variants and chromatin structure, update of advances[J]. Comput Struct Biotechnol J, 2023, 21: 299-311.
[17] FAAST R, THONGLAIROAM V, SCHULZ T C, et al. Histone variant H2A.Z is required for early mammalian development[J]. Curr Biol, 2001, 11(15): 1183-1187.
[18] COLINO-SANGUINO Y, CLARK S J, VALDES-MORA F. The H2A.Z-nuclesome code in mammals: emerging functions[J]. Trends Genet, 2022, 38(3): 273-289.
[19] SOBOLEVA T A, PARKER B J, NEKRASOV M, et al. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B[J]. PLoS Genet, 2017, 13(2): e1006633.
[20] SANSONI V, CASAS-DELUCCHI C S, RAJAN M, et al. The histone variant H2A.Bbd is enriched at sites of DNA synthesis[J]. Nucleic Acids Res, 2014, 42(10): 6405-6420.
[21] SUN Z, BERNSTEIN E. Histone variant macroH2A: from chromatin deposition to molecular function[J]. Essays Biochem, 2019, 63(1): 59-74.
[22] ROGAKOU E P, PILCH D R, ORR A H, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139[J]. J Biol Chem, 1998, 273(10): 5858-5868.
[23] GOLDBERG A D, BANASZYNSKI L A, NOH K M, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions[J]. Cell, 2010, 140(5): 678-691.
[24] JIN C, ZANG C, WEI G, et al. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions[J]. Nat Genet, 2009, 41(8): 941-945.
[25] PIQUET S, LE PARC F, BAI S K, et al. The Histone Chaperone FACT Coordinates H2A.X-Dependent Signaling and Repair of DNA Damage[J]. Mol Cell, 2018, 72(5): 888-901.
[26] ARENTS G, BURLINGAME R W, WANG B C, et al. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix[J]. Proc Natl Acad Sci U S A, 1991, 88(22): 10148-10152.
[27] CUTTER A R, HAYES J J. A brief review of nucleosome structure[J]. FEBS Lett, 2015, 589(20 Pt A): 2914-2922.
[28] 黄鸿达. 组蛋白分子伴侣Rtt106以及人的Brd2蛋白结构与生物学功能研究[D]. 中国科学技术大学, 2010.
[29] DAVEY C A, SARGENT D F, LUGER K, et al. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution[J]. J Mol Biol, 2002, 319(5): 1097-1113.
[30] 刘永瑞. NAP1组蛋白分子伴侣功能的结构研究[D]. 中国科学技术大学, 2019.
[31] GROTH A, CORPET A, COOK A J, et al. Regulation of replication fork progression through histone supply and demand[J]. Science, 2007, 318(5858): 1928-1931.
[32] BURGESS R J, ZHANG Z. Histone chaperones in nucleosome assembly and human disease[J]. Nat Struct Mol Biol, 2013, 20(1): 14-22.
[33] HAMMOND C M, STROMME C B, HUANG H, et al. Histone chaperone networks shaping chromatin function[J]. Nat Rev Mol Cell Biol, 2017, 18(3): 141-158.
[34] ANDREWS A J, CHEN X, ZEVIN A, et al. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions[J]. Mol Cell, 2010, 37(6): 834-842.
[35] ANNUNZIATO A T. Assembling chromatin: the long and winding road[J]. Biochim Biophys Acta, 2013, 1819(3-4): 196-210.
[36] GURARD-LEVIN Z A, QUIVY J P, ALMOUZNI G. Histone chaperones: assisting histone traffic and nucleosome dynamics[J]. Annu Rev Biochem, 2014, 83: 487-517.
[37] HENIKOFF S, SMITH M M. Histone variants and epigenetics[J]. Cold Spring Harb Perspect Biol, 2015, 7(1): a019364.
[38] LACOSTE N, WOOLFE A, TACHIWANA H, et al. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX[J]. Mol Cell, 2014, 53(4): 631-644.
[39] ISHIUCHI T, ENRIQUEZ-GASCA R, MIZUTANI E, et al. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly[J]. Nat Struct Mol Biol, 2015, 22(9): 662-671.
[40] LASKEY R A, HONDA B M, MILLS A D, et al. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA[J]. Nature, 1978, 275(5679): 416-420.
[41] HAMMOND C M, BAO H, HENDRIKS I A, et al. DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network[J]. Mol Cell, 2021, 81(12): 2533-2548.
[42] ENGLISH C M, ADKINS M W, CARSON J J, et al. Structural basis for the histone chaperone activity of Asf1[J]. Cell, 2006, 127(3): 495-508.
[43] SMITH S, STILLMAN B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro[J]. Cell, 1989, 58(1): 15-25.
[44] WANG P, YANG W, ZHAO S, et al. Regulation of chromatin structure and function: insights into the histone chaperone FACT[J]. Cell Cycle, 2021, 20(5-6): 465-479.
[45] HARATA M, OMA Y, MIZUNO S, et al. The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histones[J]. Mol Biol Cell, 1999, 10(8): 2595-2605.
[46] BAO H, CARRARO M, FLURY V, et al. NASP maintains histone H3-H4 homeostasis through two distinct H3 binding modes[J]. Nucleic Acids Res, 2022, 50(9): 5349-5368.
[47] LIU Y, CHEN L, WANG N, et al. Structural basis for histone H3 recognition by NASP in Arabidopsis[J]. J Integr Plant Biol, 2022, 64(12):2309-2313.
[48] LIU Y, HUANG H, ZHOU B O, et al. Structural analysis of Rtt106p reveals a DNA binding role required for heterochromatin silencing[J]. J Biol Chem, 2010, 285(6): 4251-4262.
[49] NIKOLOV V N, MALAVIA D, KUBOTA T. SWI/SNF and the histone chaperone Rtt106 drive expression of the Pleiotropic Drug Resistance network genes[J]. Nat Commun, 2022, 13(1): 1968.
[50] MAO Z, PAN L, WANG W, et al. Anp32e, a higher eukaryotic histone chaperone directs preferential recognition for H2A.Z[J]. Cell Res, 2014, 24(4): 389-399.
[51] OBRI A, OUARARHNI K, PAPIN C, et al. ANP32E is a histone chaperone that removes H2A.Z from chromatin[J]. Nature, 2014, 505(7485): 648-653.
[52] LIU Y, XU L, XIE C, et al. Structural Insights into ceNAP1 Chaperoning Activity toward ceH2A-H2B[J]. Structure, 2019, 27(12): 1798-1810 e1793.
[53] LUO Q, WANG B, WU Z, et al. NAP1-Related Protein 1 (NRP1) has multiple interaction modes for chaperoning histones H2A-H2B[J]. Proc Natl Acad Sci U S A, 2020, 117(48): 30391-30399.
[54] JERONIMO C, ROBERT F. The histone chaperone FACT: a guardian of chromatin structure integrity[J]. Transcription, 2022, 13(1-3): 16-38.
[55] CORBESKI I, GUO X, ECKHARDT B V, et al. Chaperoning of the histone octamer by the acidic domain of DNA repair factor APLF[J]. Sci Adv, 2022, 8(30): eabo0517.
[56] RAY-GALLET D, ALMOUZNI G. H3-H4 histone chaperones and cancer[J]. Curr Opin Genet Dev, 2022, 73: 101900.
[57] PARDAL A J, FERNANDES-DUARTE F, BOWMAN A J. The histone chaperoning pathway: from ribosome to nucleosome[J]. Essays Biochem, 2019, 63(1): 29-43.
[58] PETRYK N, DALBY M, WENGER A, et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication[J]. Science, 2018, 361(6409): 1389-1392.
[59] FRANCIS N J, SIHOU D. Inheritance of Histone (H3/H4): A Binary Choice?[J]. Trends Biochem Sci, 2021, 46(1): 5-14.
[60] HORARD B, SAPEY-TRIOMPHE L, BONNEFOY E, et al. ASF1 is required to load histones on the HIRA complex in preparation of paternal chromatin assembly at fertilization[J]. Epigenetics Chromatin, 2018, 11(1): 19.
[61] EHARA H, KUJIRAI T, SHIROUZU M, et al. Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT[J]. Science, 2022, 377(6611): eabp9466.
[62] MCKNIGHT S L, MILLER O L, JR. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo[J]. Cell, 1977, 12(3): 795-804.
[63] MACALPINE D M, ALMOUZNI G. Chromatin and DNA replication[J]. Cold Spring Harb Perspect Biol, 2013, 5(8): a010207.
[64] XU M, LONG C, CHEN X, et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly[J]. Science, 2010, 328(5974): 94-98.
[65] YU C, GAN H, SERRA-CARDONA A, et al. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands[J]. Science, 2018, 361(6409): 1386-1389.
[66] FLURY V, REVERON-GOMEZ N, ALCARAZ N, et al. Recycling of modified H2A-H2B provides short-term memory of chromatin states[J]. Cell, 2023
[67] MASUMOTO H, HAWKE D, KOBAYASHI R, et al. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response[J]. Nature, 2005, 436(7048): 294-298.
[68] JASENCAKOVA Z, SCHARF A N, ASK K, et al. Replication stress interferes with histone recycling and predeposition marking of new histones[J]. Mol Cell, 2010, 37(5): 736-743.
[69] MADAMBA E V, BERTHET E B, FRANCIS N J. Inheritance of Histones H3 and H4 during DNA Replication In Vitro[J]. Cell Rep, 2017, 21(5): 1361-1374.
[70] HOGAN A K, FOLTZ D R. Reduce, Retain, Recycle: Mechanisms for Promoting Histone Protein Degradation versus Stability and Retention[J]. Mol Cell Biol, 2021, 41(6): e0000721.
[71] CHEN P, ZHAO J, WANG Y, et al. Corrigendum: H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin[J]. Genes Dev, 2021, 35(9-10): 782.
[72] CHEN P, ZHAO J, WANG Y, et al. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin[J]. Genes Dev, 2013, 27(19): 2109-2124.
[73] TORNE J, RAY-GALLET D, BOYARCHUK E, et al. Two HIRA-dependent pathways mediate H3.3 de novo deposition and recycling during transcription[J]. Nat Struct Mol Biol, 2020, 27(11): 1057-1068.
[74] ARMACHE A, YANG S, MARTINEZ DE PAZ A, et al. Histone H3.3 phosphorylation amplifies stimulation-induced transcription[J]. Nature, 2020, 583(7818): 852-857.
[75] WEN H, LI Y, XI Y, et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression[J]. Nature, 2014, 508(7495): 263-268.
[76] GUO R, ZHENG L, PARK J W, et al. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing[J]. Mol Cell, 2014, 56(2): 298-310.
[77] HAKE S B, GARCIA B A, KAUER M, et al. Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes[J]. Proc Natl Acad Sci U S A, 2005, 102(18): 6344-6349.
[78] TORRES-ARCIGA K, FLORES-LEON M, RUIZ-PEREZ S, et al. Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape[J]. Front Genet, 2022, 13: 1057846.
[79] BEGUM N A, HAQUE F, STANLIE A, et al. Phf5a regulates DNA repair in class switch recombination via p400 and histone H2A variant deposition[J]. EMBO J, 2021, 40(12): e106393.
[80] FORTUNY A, CHANSARD A, CARON P, et al. Imaging the response to DNA damage in heterochromatin domains reveals core principles of heterochromatin maintenance[J]. Nat Commun, 2021, 12(1): 2428.
[81] GULVE N, SU C, DENG Z, et al. DAXX-ATRX regulation of p53 chromatin binding and DNA damage response[J]. Nat Commun, 2022, 13(1): 5033.
[82] YILMAZ D, FURST A, MEABURN K, et al. Activation of homologous recombination in G1 preserves centromeric integrity[J]. Nature, 2021, 600(7890): 748-753.
[83] HUANG Y, SUN L, PIERRAKEAS L, et al. Role of a DEF/Y motif in histone H2A-H2B recognition and nucleosome editing[J]. Proc Natl Acad Sci U S A, 2020, 117(7): 3543-3550.
[84] ELSäSSER S J, HUANG H, LEWIS P W, et al. DAXX envelops a histone H3.3–H4 dimer for H3.3-specific recognition[J]. Nature, 2012, 491(7425): 560-565.
[85] HUANG H, STRøMME C B, SAREDI G, et al. A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks[J]. Nat Struct Mol Biol, 2015, 22(8): 618-626.
[86] RICKETTS M D, FREDERICK B, HOFF H, et al. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex[J]. Nat Commun, 2015, 6: 7711.
[87] RICKETTS M D, HAN J, SZURGOT M R, et al. Molecular basis for chromatin assembly and modification by multiprotein complexes[J]. Protein Sci, 2019, 28(2): 329-343.
[88] COHEN J I. Epstein–Barr Virus Infection[J]. N Engl J Med, 2000, 343(7): 481-492.
[89] KERR J R. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors[J]. J Clin Pathol, 2019, 72(10): 651-658.
[90] HAMMERSCHMIDT W. The Epigenetic Life Cycle of Epstein-Barr Virus[J]. Curr Top Microbiol Immunol, 2015, 390(Pt 1): 103-117.
[91] YOUNG L S, YAP L F, MURRAY P G. Epstein-Barr virus: more than 50 years old and still providing surprises[J]. Nat Rev Cancer, 2016, 16(12): 789-802.
[92] MURATA T. Regulation of Epstein-Barr virus reactivation from latency[J]. Microbiol Immunol, 2014, 58(6): 307-317.
[93] BARBERA A J, CHODAPARAMBIL J V, KELLEY-CLARKE B, et al. The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA[J]. Science, 2006, 311(5762): 856-861.
[94] FANG Q, CHEN P, WANG M, et al. Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome[J]. eLife, 2016, 5
[95] LESBATS P, SERRAO E, MASKELL D P, et al. Structural basis for spumavirus GAG tethering to chromatin[J]. Proc Natl Acad Sci U S A, 2017, 114(21): 5509-5514.
[96] HUANG H, DENG Z, VLADIMIROVA O, et al. Structural basis underlying viral hijacking of a histone chaperone complex[J]. Nat Commun, 2016, 7(1): 12707.
[97] LIU Y, BISIO H, TONER C M, et al. Virus-encoded histone doublets are essential and form nucleosome-like structures[J]. Cell, 2021, 184(16): 4237-4250.
[98] LAU R, MIDDELDORP J, FARRELL P J. Epstein-Barr virus gene expression in oral hairy leukoplakia[J]. Virology, 1993, 195(2): 463-474.
[99] JOHANNSEN E, LUFTIG M, CHASE M R, et al. Proteins of purified Epstein-Barr virus[J]. Proc Natl Acad Sci U S A, 2004, 101(46): 16286-16291.
[100] MASUD H, WATANABE T, YOSHIDA M, et al. Epstein-Barr Virus BKRF4 Gene Product Is Required for Efficient Progeny Production[J]. J Virol, 2017, 91(23)
[101] CHEN L W, HUNG C H, WANG S S, et al. Expression and regulation of the BKRF2, BKRF3 and BKRF4 genes of Epstein-Barr virus[J]. Virus Res, 2018, 256: 76-89.
[102] KONISHI N, NARITA Y, HIJIOKA F, et al. BGLF2 Increases Infectivity of Epstein-Barr Virus by Activating AP-1 upon De Novo Infection[J]. mSphere, 2018, 3(2)
[103] MASUD H, WATANABE T, SATO Y, et al. The BOLF1 gene is necessary for effective Epstein-Barr viral infectivity[J]. Virology, 2019, 531: 114-125.
[104] HO T H, SITZ J, SHEN Q, et al. A Screen for Epstein-Barr Virus Proteins That Inhibit the DNA Damage Response Reveals a Novel Histone Binding Protein[J]. J Virol, 2018, 92(14): e00262-218.
[105] VAN ESCH H, COLNAGHI R, FRESON K, et al. Defective DNA Polymerase alpha-Primase Leads to X-Linked Intellectual Disability Associated with Severe Growth Retardation, Microcephaly, and Hypogonadism[J]. Am J Hum Genet, 2019, 104(5): 957-967.
[106] GUILLIAM T A, YEELES J T P. An updated perspective on the polymerase division of labor during eukaryotic DNA replication[J]. Crit Rev Biochem Mol Biol, 2020, 55(5): 469-481.
[107] COSTA A, DIFFLEY J F X. The Initiation of Eukaryotic DNA Replication[J]. Annu Rev Biochem, 2022, 91: 107-131.
[108] JENKINSON F, ZEGERMAN P. Roles of phosphatases in eukaryotic DNA replication initiation control[J]. DNA Repair (Amst), 2022, 118: 103384.
[109] DOUGLAS M E, ALI F A, COSTA A, et al. The mechanism of eukaryotic CMG helicase activation[J]. Nature, 2018, 555(7695): 265-268.
[110] NOGUCHI Y, YUAN Z, BAI L, et al. Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model[J]. Proc Natl Acad Sci U S A, 2017, 114(45): E9529-9538.
[111] TOMCZYK P, SYNOWIEC E, WYSOKINSKI D, et al. Eukaryotic TLS polymerases[J]. Postepy Hig Med Dosw (Online), 2016, 70(0): 522-533.
[112] SIMON A C, ZHOU J C, PERERA R L, et al. A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome[J]. Nature, 2014, 510(7504): 293-297.
[113] GAMBUS A, VAN DEURSEN F, POLYCHRONOPOULOS D, et al. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome[J]. EMBO J, 2009, 28(19): 2992-3004.
[114] GAN H, SERRA-CARDONA A, HUA X, et al. The Mcm2-Ctf4-Polalpha Axis Facilitates Parental Histone H3-H4 Transfer to Lagging Strands[J]. Mol Cell, 2018, 72(1): 140-151.
[115] EVRIN C, MAMAN J D, DIAMANTE A, et al. Histone H2A‐H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin[J]. EMBO J, 2018, 37(19): e99021.
[116] LI Z, HUA X, SERRA-CARDONA A, et al. DNA polymerase α interacts with H3-H4 and facilitates the transfer of parental histones to lagging strands[J]. Sci Adv, 2020, 6(35): eabb5820.
[117] XU X, DUAN S, HUA X, et al. Stable inheritance of H3.3-containing nucleosomes during mitotic cell divisions[J]. Nat Commun, 2022, 13(1): 2514.
[118] MIZUGUCHI G, SHEN X, LANDRY J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex[J]. Science, 2004, 303(5656): 343-348.
[119] HE H, LI Y, DONG Q, et al. Coordinated regulation of heterochromatin inheritance by Dpb3-Dpb4 complex[J]. Proc Natl Acad Sci U S A, 2017, 114(47): 12524-12529.
[120] BELLELLI R, BELAN O, PYE V E, et al. POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication[J]. Mol Cell, 2018, 72(1): 112-126.
[121] ATTALI I, BOTCHAN M R, BERGER J M. Structural Mechanisms for Replicating DNA in Eukaryotes[J]. Annu Rev Biochem, 2021, 90: 77-106.
[122] YUAN Z, GEORGESCU R, SCHAUER G D, et al. Structure of the polymerase epsilon holoenzyme and atomic model of the leading strand replisome[J]. Nat Commun, 2020, 11(1): 3156.
[123] BELLELLI R, BOREL V, LOGAN C, et al. Polepsilon Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis[J]. Mol Cell, 2018, 70(4): 707-721.
[124] SIAMISHI I, IWANAMI N, CLAPES T, et al. Lymphocyte-Specific Function of the DNA Polymerase Epsilon Subunit Pole3 Revealed by Neomorphic Alleles[J]. Cell Rep, 2020, 31(11): 107756.
[125] BREWSTER N K, JOHNSTON G C, SINGER R A. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription[J]. Mol Cell Biol, 2001, 21(10): 3491-3502.
[126] FORMOSA T, ERIKSSON P, WITTMEYER J, et al. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN[J]. EMBO J, 2001, 20(13): 3506-3517.
[127] SARANGI M K, ZVODA V, HOLTE M N, et al. Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A[J]. Nucleic Acids Res, 2019, 47(6): 2871-2883.
[128] LIU Y, ZHOU K, ZHANG N, et al. FACT caught in the act of manipulating the nucleosome[J]. Nature, 2020, 577(7790): 426-431.
[129] SIVKINA A L, KARLOVA M G, VALIEVA M E, et al. Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT[J]. Commun Biol, 2022, 5(1): 2.
[130] CHEN P, DONG L, HU M, et al. Functions of FACT in Breaking the Nucleosome and Maintaining Its Integrity at the Single-Nucleosome Level[J]. Mol Cell, 2018, 71(2): 284-293.
[131] FARNUNG L, OCHMANN M, ENGEHOLM M, et al. Structural basis of nucleosome transcription mediated by Chd1 and FACT[J]. Nat Struct Mol Biol, 2021, 28(4): 382-387.
[132] PETRENKO N, JIN Y, DONG L, et al. Requirements for RNA polymerase II preinitiation complex formation in vivo[J]. Elife, 2019, 8
[133] SCHWABISH M A, STRUHL K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II[J]. Mol Cell Biol, 2004, 24(23): 10111-10117.
[134] YANG G, CHEN Y, WU J, et al. Poly(ADP-ribosyl)ation mediates early phase histone eviction at DNA lesions[J]. Nucleic Acids Res, 2020, 48(6): 3001-3013.
[135] HEO K, KIM H, CHOI S H, et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16[J]. Mol Cell, 2008, 30(1): 86-97.
[136] CHARLES RICHARD J L, SHUKLA M S, MENONI H, et al. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC[J]. PLoS Genet, 2016, 12(7): e1006221.
[137] OLIVEIRA D V, KATO A, NAKAMURA K, et al. Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20[J]. J Cell Sci, 2014, 127(Pt 4): 763-772.
[138] KURAT C F, YEELES J T P, PATEL H, et al. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates[J]. Mol Cell, 2017, 65(1): 117-130.
[139] FOLTMAN M, EVRIN C, DE PICCOLI G, et al. Eukaryotic replisome components cooperate to process histones during chromosome replication[J]. Cell Rep, 2013, 3(3): 892-904.
[140] YANG J, ZHANG X, FENG J, et al. The Histone Chaperone FACT Contributes to DNA Replication-Coupled Nucleosome Assembly[J]. Cell Rep, 2016, 14(5): 1128-1141.
[141] WANG J H, LI Y, DENG S L, et al. Recent Research Advances in Mitosis during Mammalian Gametogenesis[J]. Cells, 2019, 8(6)
[142] NASHUN B, HILL P W, HAJKOVA P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past[J]. EMBO J, 2015, 34(10): 1296-1308.
[143] HOSSAN T, NAGARAJAN S, BAUMGART S J, et al. Histone Chaperone SSRP1 is Essential for Wnt Signaling Pathway Activity During Osteoblast Differentiation[J]. Stem Cells, 2016, 34(5): 1369-1376.
[144] STUWE T, HOTHORN M, LEJEUNE E, et al. The FACT Spt16 "peptidase" domain is a histone H3-H4 binding module[J]. Proc Natl Acad Sci U S A, 2008, 105(26): 8884-8889.
[145] KEMBLE D J, WHITBY F G, ROBINSON H, et al. Structure of the Spt16 middle domain reveals functional features of the histone chaperone FACT[J]. J Biol Chem, 2013, 288(15): 10188-10194.
[146] KEMBLE D J, MCCULLOUGH L L, WHITBY F G, et al. FACT Disrupts Nucleosome Structure by Binding H2A-H2B with Conserved Peptide Motifs[J]. Mol Cell, 2015, 60(2): 294-306.
[147] HUANG Y, DAI Y, ZHOU Z. Mechanistic and structural insights into histone H2A–H2B chaperone in chromatin regulation[J]. Biochem J, 2020, 477(17): 3367-3386.
[148] CHEN J, LU Z, GONG W, et al. Epstein-Barr virus protein BKRF4 restricts nucleosome assembly to suppress host antiviral responses[J]. Proc Natl Acad Sci U S A, 2022, 119(37): e2203782119.
[149] WINKLER D D, MUTHURAJAN U M, HIEB A R, et al. Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events[J]. J Biol Chem, 2011, 286(48): 41883-41892.
[150] PRENDERGAST L, MüLLER S, LIU Y, et al. The CENP-T/-W complex is a binding partner of the histone chaperone FACT[J]. Genes Dev, 2016, 30(11): 1313-1326.
[151] TSUNAKA Y, FUJIWARA Y, OYAMA T, et al. Integrated molecular mechanism directing nucleosome reorganization by human FACT[J]. Genes Dev, 2016, 30(6): 673-686.
[152] SENAPATI P, SUDARSHAN D, GADAD S S, et al. Methods to study histone chaperone function in nucleosome assembly and chromatin transcription[J]. Methods Mol Biol, 2015, 1288: 375-394.
[153] SILLJE H H, NIGG E A. Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases[J]. Curr Biol, 2001, 11(13): 1068-1073.
[154] ZHOU Z, FENG H, HANSEN D F, et al. NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B[J]. Nat Struct Mol Biol, 2008, 15(8): 868-869.
[155] LUGER K, RECHSTEINER T J, RICHMOND T J. Preparation of nucleosome core particle from recombinant histones[J]. Methods Enzymol, 1999, 304: 3-19.
[156] OSAKABE A, TACHIWANA H, MATSUNAGA T, et al. Nucleosome formation activity of human somatic nuclear autoantigenic sperm protein (sNASP)[J]. J Biol Chem, 2010, 285(16): 11913-11921.
[157] ATTAR N, CAMPOS O A, VOGELAUER M, et al. The histone H3-H4 tetramer is a copper reductase enzyme[J]. Science, 2020, 369(6499): 59-64.

所在学位评定分委会
生物学
国内图书分类号
Q71
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545308
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
李玥. 组蛋白伴侣的鉴定与结构研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930751-李玥-生物系.pdf(8903KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李玥]的文章
百度学术
百度学术中相似的文章
[李玥]的文章
必应学术
必应学术中相似的文章
[李玥]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。