[1] YAHYA M, SHAH J A, KADIR K A, et al. Motion capture sensing techniques used in human upper limb motion: a review [J]. Sensor Review, 2019, 39(4): 504-511.
[2] ZHOU H, STONE T, HU H, et al. Use of multiple wearable inertial sensors in upper limb motion tracking [J]. Medical Engineering & Physics, 2008, 30(1): 123-133.
[3] NGUYEN H, LEBEL K, BOGARD S, et al. Using inertial sensors to automatically detect and segment activities of daily living in people with parkinson’s disease [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(1): 197-204.
[4] LIU G, MCMILLAN L. Estimation of missing markers in human motion capture [J]. The Visual Computer, 2006, 22(9): 721-728.
[5] PICERNO P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches [J]. Gait & Posture, 2017, 51: 239-246.
[6] VAN DER KRUK E, REIJNE M M. Accuracy of human motion capture systems for sport applications; state-of-the-art review [J]. European Journal of Sport Science, 2018, 18(6): 806-819.
[7] WANG Q, MARKOPOULOS P, YU B, et al. Interactive wearable systems for upper body rehabilitation: a systematic review [J]. Journal of Neuroengineering and Rehabilitation, 2017, 14:20.
[8] DIGO E, PASTORELLI S, GASTALDI L. A narrative review on wearable inertial sensors for human motion tracking in industrial scenarios [J]. Robotics, 2022, 11(6): 138.
[9] ALARCóN-ALDANA A C, CALLEJAS-CUERVO M, BO A P L. Upper limb physical rehabilitation using serious videogames and motion capture systems: A systematic review [J]. Sensors (Switzerland), 2020, 20(21): 1-22.
[10] LOPEZ-NAVA I H, ANGELICA M M. Wearable inertial sensors for human motion analysis: a review [J]. IEEE Sensors Journal, 2016, 16(22):7821-7834
[11] WAQAR A, AHMAD I, HABIBI D, et al. Enhancing athlete tracking using data fusion in wearable technologies [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
[12] RAJKUMAR A, VULPI F, BETHI S R, et al. Wearable inertial sensors for range of motion assessment [J]. IEEE Sensors Journal, 2020, 20(7): 3777-3787.
[13] BAI L, PEPPER M G, YAN Y, et al. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(2): 232-243.
[14] EL-GOHARY M, MCNAMES J. Shoulder and elbow joint angle tracking with inertial sensors [J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2635-2641.
[15] PIRES I M, DENYSYUK H V, VILLASANA M V, et al. Development technologies for the monitoring of six-minute walk test: a systematic review [J]. Sensors, 2022, 22(2): 581.
[16] AL-AMRI M, NICHOLAS K, BUTTON K, et al. Inertial measurement units for clinical movement analysis: reliability and concurrent validity [J]. Sensors (Basel), 2018, 18(3):719.
[17] MILOSEVIC B, LEARDINI A, FARELLA E. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison [J]. BioMedical Engineering OnLine, 2020, 19:25.
[18] NAZARAHARI M, ROUHANI H. 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: methods, lessons learned, and future challenges [J]. Information Fusion, 2021, 68: 67-84.
[19] 刘玉焘. 基于可穿戴式传感器的人体动作捕获与识别研究 [D]. 哈尔滨:哈尔滨工业大学航天学院, 2020.
[20] JHUNJHUNWALA V K, ALI T, KUMAR P, et al. Flexible UWB and MIMO antennas for wireless body area network: a review [J]. Sensors, 2022, 22(23): 9549.
[21] GUOSHENG W, SHUQI Q, QIANG L, et al. UWB and IMU system fusion for indoor navigation [C]// 2018 37th Chinese Control Conference(CCC), July 25-27, 2018, Wuhan, China, IEEE, c2018:4946-4950.
[22] ZIHAJEHZADEH S, YOON P K, KANG B S, et al. UWB-Aided inertial motion capture for lower body 3-d dynamic activity and trajectory tracking [J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3577-3587.
[23] ZIHAJEHZADEH S, PARK E J. A novel biomechanical model-aided IMU/UWB fusion for magnetometer-free lower body motion capture [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(6): 927-938.
[24] YOON P K, ZIHAJEHZADEH S, KANG B-S, et al. Robust biomechanical model-based 3-d indoor localization and tracking method using UWB and IMU [J]. IEEE Sensors Journal, 2017, 17(4): 1084-1096.
[25] FENG D, WANG C, HE C, et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation [J]. IEEE Internet of Things Journal, 2020, 7(4): 3133-3146.
[26] ZHONG Y, LIU T, LI B, et al. Integration of UWB and IMU for precise and continuous indoor positioning [C]// 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), March 22-23, 2018, Wuhan, China, IEEE, c2018:1-5.
[27] CORRALES J A, CANDELAS F A, TORRES F. Hybrid tracking of human operators using IMU/UWB data fusion by a kalman filter [C]// 2008 3rd ACM/IEEE International Conference on Human Robot Interaction (HRI), March 12-15, 2008, Amsterdam, The Netherlands, IEEE, c2008: 193–200.
[28] ZIHAJEHZADEH S, PARK E J. A novel biomechanical model-aided IMU/UWB fusion for magnetometer-free lower body motion capture [J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2017, 47(6): 927-938.
[29] LAIDIG D, CARUSO M, CEREATTI A, et al. BROAD—A benchmark for robust inertial orientation estimation [J]. Data, 2021, 6(7): 72.
[30] CARUSO M, SABATINI A M, LAIDIG D, et al. Analysis of the accuracy of ten algorithms for orientation estimation using inertial and magnetic sensing under optimal conditions: one size does not fit all [J]. Sensors, 2021, 21(7): 2543.
[31] MAHONY R, HAMEL T, PFLIMLIN J. Nonlinear complementary filters on the special orthogonal group [J]. IEEE Transactions on Automatic Control, 2008, 53(5): 1203-1218.
[32] MADGWICK S O H, HARRISON A J L, VAIDYANATHAN R. Estimation of IMU and MARG orientation using a gradient descent algorithm [C]// 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), June 29 - July 1, 2011, Zurich, Switzerland, IEEE, c2011:1-7.
[33] 严恭敏,翁浚. 捷联惯导算法与组合导航原理 [M]. 西安: 西北工业大学出版社, 2019.
[34] BRIGANTE C M N, ABBATE N, BASILE A, et al. Towards miniaturization of a MEMS-based wearable motion capture system [J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3234-3241.
[35] SABATELLI S, GALGANI M, FANUCCI L, et al. A double-stage Kalman filter for orientation tracking with an integrated processor in 9-D IMU [J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(3): 590-598.
[36] KIM J, JANG H, HWANG D-H, et al. A step, stride and heading determination for the pedestrian navigation system [J]. Journal of Global Positioning Systems, 2004, 3: 273-279.
[37] XIANJIA Y, QINGQING L, QUERALTA J P, et al. Applications of UWB networks and positioning to autonomous robots and industrial systems[C]// 2021 10th Mediterranean Conference on Embedded Computing (MECO), June 7-10, 2021, Budva, Montenegro, IEEE, c2021: 1-6.
[38] MINOLI D, OCCHIOGROSSO B. Ultrawideband (UWB) technology for smart cities IoT applications [C]// 2018 IEEE International Smart Cities Conference (ISC2), September 16-19, 2018, Kansas City, MO, USA, IEEE, c2018:1-8.
[39] ELSANHOURY M, MäKELä P, KOLJONEN J, et al. Precision positioning for smart logistics using ultra-wideband technology-based indoor navigation: a review [J]. IEEE Access, 2022, 10: 44413-44445.
[40] HOL J D, DIJKSTRA F, LUINGE H, et al. Tightly coupled UWB/IMU pose estimation [C]// 2009 IEEE International Conference on Ultra-Wideband, September 9-11, 2009, Vancouver, BC, Canada, IEEE, c2009:688-692.
[41] KOK M, HOL J D, SCHöN T B. Indoor positioning using ultrawideband and inertial measurements [J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1293-1303.
[42] WEN K, YU K, LI Y, et al. A new quaternion kalman filter based foot-mounted IMU and UWB tightly-coupled method for indoor pedestrian navigation [J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4340-4352.
[43] ZWIRELLO L, XUYANG L, ZWICK T, et al. Sensor data fusion in UWB-supported inertial navigation systems for indoor navigation[C]// 2013 IEEE International Conference on Robotics and Automation, May 6-10, 2013, Karlsruhe, Germany, IEEE, c2013:3154-3159.
[44] ZHANG H, ZHANG Z, ZHAO R, et al. Review on UWB-based and multi-sensor fusion positioning algorithms in indoor environment[C]// 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), March 12-14, 2021, Chongqing, China, IEEE, c2021: 1594-1598.
[45] NAHEEM K, KIM M S. A low-cost foot-placed UWB and IMU fusion-based indoor pedestrian tracking system for iot applications [J]. Sensors, 2022, 22(21): 8160.
[46] YAO L, WU Y-W A, YAO L, et al. An integrated IMU and UWB sensor based indoor positioning system [C]// 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 18-21, 2017, Sapporo, Japan, IEEE, c2017:1-8.
[47] 李刚, 吴政, 孟小利. 基于微型传感器驱动的三维实时运动人体模型 [J]. 计算机应用, 2010, 29(12): 3336–3339.
[48] 李启雷, 金文光, 耿卫东. 基于无线惯性传感器的人体动作捕获方法 [J]. 浙江大学学报:工学版, 2012, 46(2): 280–285.
[49] DASH B, PENG J. Zigbee wireless sensor networks: performance study in an apartment-based indoor environment [J]. Journal of Computer Networks and Communications, 2022, 2022: 1-14.
[50] 802.15.4-2020 - IEEE standard for low-rate wireless networks [S/OL]. IEEE. 2020:1-800.
[2023-05-15]. https://ieeexplore.ieee.org/document/9144691
[51] TIPPARAJU V, MALLIRES K, WANG D, et al. Mitigation of data packet loss in bluetooth low energy-based wearable healthcare ecosystem [J]. Biosensors, 2021, 11: 350.
[52] SLADE P, HABIB A, HICKS J L, et al. An open-source and wearable system for measuring 3D human motion in real-time [J]. IEEE Transactions on Biomedical Engineering, 2022, 69(2): 678-688.
[53] SETH A, HICKS J L, UCHIDA T K, et al. OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. [J]. PLoS Computational Biology, 2018, 14(7): e1006223
[54] DEMBIA C L, BIANCO N A, FALISSE A, et al. OpenSim Moco: musculoskeletal optimal control [J]. PLoS Computational Biology, 2021, 16(12): e1008493.
[55] AL BORNO M, O’DAY J, IBARRA V, et al. OpenSense: an open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations [J]. Journal of Neuroengineering and Rehabilitation, 2022, 19(1):22.
[56] 秦永元. 惯性导航(第二版) [M]. 北京: 科学出版社, 2014.
[57] FOXLIN E. Pedestrian tracking with shoe-mounted inertial sensors [J]. IEEE Computer Graphics and Applications, 2005, 25(6): 38-46.
[58] DELP S L, ANDERSON F C, ARNOLD A S, et al. OpenSim: open-Source Software to Create and Analyze Dynamic Simulations of Movement [J]. IEEE Transactions on Biomedical Engineering, 2007, 54(11): 1940-1950.
[59] RAJAGOPAL A, DEMBIA C L, DEMERS M S, et al. Full-body musculoskeletal model for muscle-driven simulation of human gait [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(10): 2068-2079.
修改评论