中文版 | English
题名

基于三功能探针对蛋白质复合物的深度分析及应用

其他题名
PROTEIN COMPLEXES PROFILING AND APPLICATION BASED ON TRIFUNCTIONAL PROBES
姓名
姓名拼音
QIN Yunqiu
学号
11849611
学位类型
博士
学位专业
0817 化学工程与技术
学科门类/专业学位类别
08 工学
导师
田瑞军
导师单位
化学系
论文答辩日期
2023-04-24
论文提交日期
2023-07-13
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

  蛋白质是生命体中最基本的构建单元,在各种生命活动中扮演着至关重要的角色。受多种翻译后修饰的调控,蛋白质与蛋白质之间产生非共价的相互作用,从而组装为时空动态的蛋白质复合物,并发挥多样的分子功能,实现对表型的精准控制。亲和纯化质谱法是研究蛋白质复合物的经典方法,能直接、无偏地分析细胞裂解液中的蛋白质复合物。然而,该方法难以捕获具有弱相互作用力的瞬时蛋白质复合物。基于三功能探针的化学交联策略在亲和纯化质谱法的基础上,能通过在探针中引入能与蛋白质形成共价键的活性官能团,捕获具有弱相互作用的蛋白质复合物。Photo-pTyr-scaffold是本课题组自主开发的一种结合三功能探针与酪氨酸磷酸化结合结构域SH2结构域的化学蛋白质组学分析策略,具有分析细胞和组织样本中酪氨酸磷酸化介导的蛋白质复合物的能力。但是,该策略所使用的三功能探针不适用于分析其他翻译后修饰介导的蛋白质复合物,并且仍然无法区分富集产物中蛋白质复合物的一一对应关系。因此,本论文主要设计合成了两种新型三功能探针,开发了利用三功能探针分析磷酸化、甲基化等翻译后修饰介导的蛋白质复合物的新型化学蛋白质组学策略。此外,由于受体酪氨酸激酶作为激活细胞信号转导网络的“大门”,是癌症靶向治疗的重要药物靶点之一,本论文将基于三功能探针研究酪氨酸磷酸化蛋白质复合物的方法,应用于对酪氨酸激酶抑制剂筛选。主要的研究内容以及结果总结如下:

       利用谷胱甘肽(Glutathione, GSH)与谷胱甘肽-S-转移酶(Glutathione-S-transferase, GST)之间特异性的非共价作用力,首次设计了一种新型三功能探针,以生物素为富集端,通过GSH标记带GST标签的翻译后修饰识别结构域,利用二苯甲酮共价交联蛋白质复合物。该探针通用地标记了10种带GST标签的磷酸化、甲基化识别结构域。在磷酸化介导的蛋白质复合物的捕获方面,该方法与Photo-pTyr-scaffold的富集效果相当,共同鉴定到了14个表皮生长因子受体EGFR信号通路下游的信号蛋白质。此外,该方法还选择性地富集了4种天然的SH2结构域相关的酪氨酸磷酸化介导的信号蛋白质。对于目前缺乏有效的富集策略的甲基化蛋白质复合物,利用策略也实现了对5个天然甲基化识别结构域的236个相互作用蛋白质的高效富集。本研究以酪氨酸磷酸化与蛋白质甲基化为例,为探索各种翻译后修饰介导的蛋白质复合物提供了一种高通量、高效和通用的化学蛋白质组学分析策略。

       针对Photo-pTyr-scaffold策略无法区分富集产物中蛋白质复合物一一对应关系的问题,本论文进一步开发了一种富集端可断裂的新型三功能探针。该探针能高选择性地捕获10个EGFR信号通路相关的酪氨酸磷酸化信号蛋白质,并经25 mmol/L连二亚硫酸钠处理能高效地断裂富集端,从而实现对富集产物的可控洗脱,为被富集的蛋白质复合物的后续分离提供了可能性。结合适用于分离微量样本的聚丙烯酰胺凝胶电泳(Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)方法,该探针交联的复合物能被分离至高分子量区域进而被质谱检测。基于该方法,在EGFR激活条件下成功地绘制出了20个重要蛋白质的分子量迁移图谱,并在高分子量区域内检测到了形成复合物的低分子量蛋白质,例如泛素连接酶CBL和支架蛋白SHC1。针对CBL和SHC1的蛋白免疫印迹法验证结果与质谱结果一致。该方法在解析酪氨酸磷酸化信号蛋白质复合物一一对应关系的同时,也发现了与EGFR形成复合物的蛋白质占比低的现象,印证了酪氨酸磷酸化化学计量比例低的事实。该策略也解决了用于多对多分析蛋白质复合物一一对应关系的共分馏质谱法和热邻近共聚集法所需样品量大,无法适用于分析微量的酪氨酸磷酸化蛋白质复合物的问题。

       在方法学应用层面,本研究系统地探索了基于三功能探针的Photo-pTyr-scaffold策略用于酪氨酸激酶抑制剂筛选的可行性,开发了基于Photo-pTyr-scaffold策略的筛药平台。研究通过绘制药物靶点蛋白EGFR、肝细胞生长因子受体MET及SHC1对抑制剂厄洛替尼、克唑替尼的剂量响应曲线并计算相应的IC50值,证明了该筛药平台能够定量地评估药物对特定靶点蛋白质的抑制效果。结合质谱检测,该筛药平台也可从组学层面系统地绘制了MET及其10种信号通路下游蛋白质对克唑替尼的剂量响应曲线,证明了该筛药方法同时具有评估药物作用的信号通路的潜力。此外,通过进一步引入酪氨酸磷酸化蛋白质组学分析策略,本研究全局性地展示了在达克替尼、阿法替尼两种EGFR抑制剂的作用下,EGFR信号通路下游的信号蛋白质及其酪氨酸磷酸化位点对药物的剂量响应趋势,探索了药物对下游信号通路产生影响的机制。其中,介导了细胞黏附、迁移等过程的激酶PTK2及其下游蛋白质不受药物影响,而与细胞增殖相关的蛋白质如转录因子STAT5则受药物影响较明显。本研究提供了一种整合蛋白质复合物与磷酸化位点信息分析药物影响的信号通路的功能蛋白质组学分析策略。

其他摘要

Proteins are the most fundamental building blocks of living organisms and play a crucial role in various life activities. Regulated by multiple post-translational modifications (PTMs), proteins interact with each other in a non-covalent manner, thus assembling into spatio-temporally dynamic protein complexes and performing diverse functions for precise control of phenotypes. Affinity purification-mass spectrometry (AP-MS) is a classical method for studying protein complexes, which can directly analyze protein complexes in cell lysates unbiasedly. However, this method has difficulty in capturing transient protein complexes with weak interaction forces. The trifunctional probe-based crosslinking strategy, based on AP-MS, can capture weakly interacting protein complexes by introducing functional groups into the probe that can form covalent bonds with proteins. Photo-pTyr-scaffold is a chemical proteomics strategy that combines a trifunctional probe with the SH2 domain which can binding with pTyr, and can analyze pTyr-mediated protein complexes in cellular and tissue samples. However, the trifunctional probe used in this strategy are not applicable to the analysis of other PTMs-mediated protein complexes and still cannot distinguish the one-to-one correspondence of protein complexes in enriched products. Therefore, this thesis focuses on the design and synthesis of two new trifunctional probes and developing novel chemical proteomics strategies using trifunctional probes to analyse protein complexes mediated by PTMs such as phosphorylation and methylation. In addition, acting as the "gateway" to activate cellular signaling networks, receptor tyrosine kinases (RTKs) are important drug targets for targeted cancer therapy. This thesis applies a trifunctional probe based approach which can study tyrosine phosphorylated protein complexes to the screening of tyrosine kinase inhibitors (TKIs). The main findings and results are summarised below:

This thesis exploits the specific non-covalent interaction between glutathione (GSH) and glutathione-S-transferase (GST) to design a novel trifunctional probe for the first time, using biotin as the enriched group, GSH to label the GST-tagged PTMs-binding domain, and benzophenone to crosslink protein complexes. The probe generically labeled 10 phosphorylated, methylated recognition domains with GST tags. The method is comparable to Photo-pTyr-scaffold in terms of enrichment and 14 epidermal growth factor receptor (EGFR)-downstream signaling proteins were identified via both strategies. Moreover, the method selectively enriched 4 natural SH2 domain-associated tyrosine phosphorylation-mediated signalling proteins. For methylation protein complexes that currently lack an effective enrichment strategy, the method was also utilised to achieve efficient enrichment of 236 interacting proteins from five natural methylation recognition domains. Using tyrosine phosphorylation and protein methylation as an example, the method provides a high-throughput, efficient and versatile chemical proteomics analysis strategy for exploring protein complexes mediated by various PTMs.

To solve the problem that the Photo-pTyr-scaffold strategy cannot distinguish the one-to-one correspondence of protein complexes in the enriched products, a new tri-functional probe with cleavable enrichment ends was further developed in this thesis. The new trifunctional probe with cleavable enrichment end was developed to capture 10 EGFR signalling pathway-associated tyrosine phosphorylation proteins with high selectivity, and with 25 mmol/L Na2S2O4 treatment, the enriched end was efficiently cleaved, enabling controllable elution of the enriched products and providing the possibility of subsequent separation of the enriched protein complexes. In combination with the SDS-PAGE method, which is suitable for the separation of microsamples, the crosslinked complexes can be separated into high molecular weight regions and identified by MS. Co-fractionation mass spectrometry and thermal proximity co-aggregation (TPCA) methods for all-to-all analysis of protein complex one-to-one correspondence require large sample volumes and are not suitable for analysis of trace amounts of pTyr protein complexes. Furthermore, as the trifunctional probe utilizes the strong interaction between biotin and streptavidin to achieve enrichment, the enriched product is difficult to elute from the streptavidin microbeads, creating difficulties for subsequent separation. Based on this method, molecular weight migration profiles of 20 important proteins were successfully mapped under EGFR activation conditions and low molecular weight proteins forming complexes, such as ubiquitin ligase CBL and scaffold protein SHC1, were detected in the high molecular weight region. The validation of the western blot (WB) method against CBL and SHC1 was consistent with the MS results. While resolving the one-to-one correspondence of pTyr signaling protein complexes, the method also revealed a low proportion of proteins forming complexes with EGFR, corroborating the low pTyr stoichiometric ratio. The strategy also solves the problem that co-fractionation mass spectrometry and thermal proximity co-aggregation, which are used for all-to-all analysis of protein complex one-to-one correspondence, require large sample volumes and cannot be applied to the analysis of microscopic tyrosine phosphorylated protein complexes.

As the application of methodology, this study systematically explored the feasibility of the trifunctional probe based Photo-pTyr-scaffold strategy for the screening of TKIs and developed a drug screening platform based on this strategy. By plotting the dose response curves of EGFR, MET and SHC1 to erlotinib and crizotinib and calculating the corresponding IC50 values, the screening platform was demonstrated to quantitatively assess the inhibitory effects of the drugs on specific target proteins. In combination with MS, the screening platform can also systematically map the dose-response curves of MET and its 10 downstream signaling proteins to crizotinib at the proteomic level, demonstrating the potential of the screening approach to assess the signalling pathways on which the drugs act. In addition, by further introducing a tyrosine phosphorylation proteomics analysis strategy, this study globally demonstrated the dose response trends of signalling proteins and their tyrosine phosphorylation sites on the EGFR signalling pathway to the two EGFR inhibitors, dacomitinib and afatinib, and explored the mechanisms by which the drug affects the downstream signalling pathway. Among them, the kinase PTK2 and its downstream proteins, which mediate cell adhesion and migration, were not affected by the drugs, while proteins related to cell proliferation, such as the transcription factor STAT5, were more significantly affected by the drugs. This study provides a functional proteomics analysis strategy that integrates information on protein complexes and phosphorylation sites to analyse inhibitors-affected signalling pathways.

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] BLUDAU I, AEBERSOLD R. Proteomic and Interactomic Insights into the Molecular Basis of Cell Functional Diversity [J]. Nature Reviews Molecular Cell Biology, 2020, 21(6): 327-340.
[2] ROSS K E, HUANG H, REN J, et al. iPTMnet: Integrative Bioinformatics for Studying PTM Networks [J]. Methods in Molecular Biology, 2017, 1558: 333-353.
[3] AEBERSOLD R, AGAR J N, AMSTER I J, et al. How Many Human Proteoforms Are There? [J]. Nature Chemical Biology, 2018, 14(3): 206-214.
[4] LUCK K, KIM D K, LAMBOURNE L, et al. A Reference Map of the Human Binary Protein Interactome [J]. Nature, 2020, 580(7803): 402-408.
[5] DERIBE Y L, PAWSON T, DIKIC I. Post-Translational Modifications in Signal Integration [J]. Nature Structure and Molecular Biology, 2010, 17(6): 666-672.
[6] HUNTER T. A Journey from Phosphotyrosine to Phosphohistidine and Beyond [J]. Molecular Cell, 2022, 82(12): 2190-2200.
[7] DUAN G, WALTHER D. The Roles of Post-Translational Modifications in the Context of Protein Interaction Networks [J]. PLoS Computational Biology, 2015, 11(2): e1004049.
[8] MANNING G, WHYTE D B, MARTINEZ R, et al. The Protein Kinase Complement of the Human Genome [J]. Science, 2002, 298(5600): 1912-1934.
[9] HUNTER T, SEFTON B M. Transforming Gene Product of Rous Sarcoma Virus Phosphorylates Tyrosine [J]. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(3): 1311-1315.
[10] HUNTER T. Tyrosine Phosphorylation: Thirty Years and Counting [J]. Current Opinion in Cell Biology, 2009, 21(2): 140-146.
[11] LIM W A, PAWSON T. Phosphotyrosine Signaling: Evolving a New Cellular Communication System [J]. Cell, 2010, 142(5): 661-667.
[12] HOPPMANN C, WONG A, YANG B, et al. Site-Specific Incorporation of Phosphotyrosine Using an Expanded Genetic Code [J]. Nature Chemical Biology, 2017, 13(8): 842-844.
[13] HUNTER T. The Genesis of Tyrosine Phosphorylation [J]. Cold Spring Harbor Perspectives in Biology, 2014, 6(5): a020644.
[14] KLEIMAN L B, MAIWALD T, CONZELMANN H, et al. Rapid Phospho-Turnover by Receptor Tyrosine Kinases Impacts Downstream Signaling and Drug Binding [J]. Molecular Cell, 2011, 43(5): 723-737.
[15] ECKHART W, HUTCHINSON M A, HUNTER T. An Activity Phosphorylating Tyrosine in Polyoma T Antigen Immunoprecipitates [J]. Cell, 1979, 18(4): 925-933.
[16] PAWSON T. Specificity in Signal Transduction: From Phosphotyrosine-SH2 Domain Interactions to Complex Cellular System [J]. Cell, 2004, 116(2): 191-203.
[17] CZERNILOFSKY A P, LEVINSON A D, VARMUS H E, et al. Nucleotide Sequence of an Avian Sarcoma Virus Oncogene (Src) and Proposed Amino Acid Sequence for Gene Product [J]. Nature, 1980, 287(5779): 198-203.
[18] CHARBONNEAU H, TONKS N K, KUMAR S, et al. Human Placenta Protein-Tyrosine-Phosphatase: Amino Acid Sequence and Relationship to a Family of Receptor-Like Proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(14): 5252-5256.
[19] GUAN K L, HAUN R S, WATSON S J, et al. Cloning and Expression of a Protein-Tyrosine-Phosphatase [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(4): 1501-1505.
[20] ALONSO A, SASIN J, BOTTINI N, et al. Protein Tyrosine Phosphatases in the Human Genome [J]. Cell, 2004, 117(6): 699-711.
[21] TONKS N K. Protein Tyrosine Phosphatases: from Genes, to Function, to Disease [J]. Nature Reviews Molecular Cell Biology, 2006, 7(11): 833-846.
[22] SADOWSKI I, STONE J C, PAWSON T. A Noncatalytic Domain Conserved among Cytoplasmic Protein-Tyrosine Kinases Modifies the Kinase Function and Transforming Activity of Fujinami Sarcoma Virus P130gag-Fps [J]. Molecular and Cellular Biology, 1986, 6(12): 4396-4408.
[23] LIU B A, SHAH E, JABLONOWSKI K, et al. The SH2 Domain-Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes [J]. Science Signaling, 2011, 4(202): ra83.
[24] KANEKO T, JOSHI R, FELLER S M, S et al. Phosphotyrosine Recognition Domains: the Typical, the Atypical and the Versatile [J]. Cell Communication and Signaling, 2012, 10(1): 32-53.
[25] KAVANAUGH W M, WILLIAMS L T. An Alternative to SH2 Domains for Binding Tyrosine-Phosphorylated Proteins [J]. Science, 1994, 266(5192): 1862-1865.
[26] UHLIK M T, TEMPLE B, BENCHARIT S, et al. Structural and Evolutionary Division of Phosphotyrosine Binding (PTB) Domains [J]. Journal of Molecular Biology, 2005, 345(1): 1-20.
[27] SMITH M J, HARDY W R, MURPHY J M, et al. Screening for PTB Domain Binding Partners and Ligand Specificity Using Proteome-Derived NPXY Peptide Arrays [J]. Molecular and Cellular Biology, 2006, 26(22): 8461-8474.
[28] BENES C H, WU N, ELIA A E, et al. The C2 Domain of PKCdelta Is a Phosphotyrosine Binding Domain [J]. Cell, 2005, 121(2): 271-280.
[29] CHRISTOFK H R, HEIDEN M G V, WU N, et al. Pyruvate Kinase M2 Is a Phosphotyrosine-Binding Protein [J]. Nature, 2008, 452(7184): 181-186.
[30] FUHRMANN J, CLANCY K W, THOMPSON P R. Chemical Biology of Protein Arginine Modifications in Epigenetic Regulation [J]. Chemical Reviews, 2015, 115(11): 5413-5461.
[31] MURN J, SHI Y. The Winding Path of Protein Methylation Research: Milestones and New Frontiers [J]. Nature Reviews Molecular Cell Biology, 2017, 18(8): 517-527.
[32] AMBLER R P, REES M W. Epsilon-N-Methyl-Lysine in Bacterial Flagellar Protein [J]. Nature, 1959, 184: 56-57.
[33] MURRAY K. The Occurrence of Epsilon-N-Methyl Lysine in Histones [J]. Biochemistry, 1964, 3: 10-15.
[34] HORNBECK P V, ZHANG B, MURRAY B, et al. PhosphoSitePlus, 2014: Mutations, PTMs and Recalibrations [J]. Nucleic Acids Research, 2015, 43(Database issue): D512-D520.
[35] BEDFORD M T, RICHARD S. Arginine Methylation an Emerging Regulator of Protein Function [J]. Molecular Cell, 2005, 18(3): 263-272.
[36] BIGGAR K K, LI S S. Non-Histone Protein Methylation as a Regulator of Cellular Signalling and Function [J]. Nature Reviews Molecular Cell Biology, 2015, 16(1): 5-17.
[37] WANG K, ZHOU Y J, LIU H, et al. Proteomic Analysis of Protein Methylation in the Yeast Saccharomyces Cerevisiae [J]. Journal of Proteomics, 2015, 114: 226-233.
[38] GREER E L, SHI Y. Histone Methylation: a Dynamic Mark in Health, Disease and Inheritance [J]. Nature Reviews Genetics, 2012, 13(5): 343-357.
[39] CORNETT E M, FERRY L, DEFOSSEZ P-A, et al. Lysine Methylation Regulators Moonlighting outside the Epigenome [J]. Molecular Cell, 2019, 75(6): 1092-1101.
[40] BIGGAR K K, WANG Z, LI S S. SnapShot: Lysine Methylation beyond Histones [J]. Molecular Cell, 2017, 68(5): 1016.
[41] KACHIRSKAIA I, SHI X, YAMAGUCHI H, et al. Role for 53BP1 Tudor Domain Recognition of p53 Dimethylated at Lysine 382 in DNA Damage Signaling [J]. Journal of Biological Chemistry, 2008, 283(50): 34660-34666.
[42] HUANG J, SENGUPTA R, ESPEJO A B, et al. p53 is Regulated by the Lysine Demethylase LSD1 [J]. Nature, 2007, 449(7158): 105-108.
[43] LUO M. Chemical and Biochemical Perspectives of Protein Lysine Methylation [J]. Chemical Reviews, 2018, 118(14): 6656-6705.
[44] TACHIBANA M, SUGIMOTO K, FUKUSHIMA T, et al. Set Domain-Containing Protein, G9a, Is a Novel Lysine-Preferring Mammalian Histone Methyltransferase with Hyperactivity and Specific Selectivity to Lysines 9 and 27 of Histone H3 [J]. Journal of Biological Chemistry, 2001, 276(27): 25309-25317.
[45] WANG R, LUO M. A Journey toward Bioorthogonal Profiling of Protein Methylation inside Living Cells [J]. Current Opinion in Chemical Biology, 2013, 17(5): 729-737.
[46] SHI Y, LAN F, MATSON C, et al. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1 [J]. Cell, 2004, 119(7): 941-953.
[47] TSUKADA Y, FANG J, ERDJUMENT-BROMAGE H, et al. Histone Demethylation by a Family of JmjC Domain-Containing Proteins [J]. Nature, 2006, 439(7078): 811-816.
[48] KANISKAN H U, MARTINI M L, JIN J. Inhibitors of Protein Methyltransferases and Demethylases [J]. Chemical Reviews, 2018, 118(3): 989-1068.
[49] POLEVODA B, SHERMAN F. Methylation of Proteins Involved in Translation [J]. Molecular Microbiology, 2007, 65(3): 590-606.
[50] MAURER-STROH S, DICKENS N J, HUGHES-DAVIES L, et al. The Tudor Domain ‘Royal Family’: Tudor, Plant Agenet, Chromo, PWWP and MBT Domains [J]. Trends in Biochemical Sciences, 2003, 28(2): 69-74.
[51] BEAVER J E, WATERS M L. Molecular Recognition of Lys and Arg Methylation [J]. ACS Chemical Biology, 2016, 11(3): 643-653.
[52] MIN J, ALLALI-HASSANI A, NADY N, et al. L3MBTL1 Recognition of Mono- and Dimethylated Histones [J]. Nature Structure and Molecular Biology, 2007, 14(12): 1229-1230.
[53] LASKO P. Tudor Domain [J]. Current Biology, 2010, 20(16): R666-R667.
[54] ZAWARE N, ZHOU M M. Chemical Modulators for Epigenome Reader Domains as Emerging Epigenetic Therapies for Cancer and Inflammation [J]. Current Opinion in Chemical Biology, 2017, 39: 116-125.
[55] BOTUYAN M V, LEE J, WARD I M, et al. Structural Basis for the Methylation State-Specific Recognition of Histone H4-K20 by 53BP1 and Crb2 in DNA Repair [J]. Cell, 2006, 127(7): 1361-1373.
[56] MEYER-NAVA S, NIETO-CABALLERO V E, ZURITA M, et al. Insights into HP1a-Chromatin Interactions [J]. Cells, 2020, 9(8):1866.
[57] CORNETT E M, FERRY L, DEFOSSEZ P A, et al. Lysine Methylation Regulators Moonlighting outside the Epigenome [J]. Molecular Cell, 2019, 75(6): 1092-1101.
[58] EISSENBERG J C. Structural Biology of the Chromodomain: Form and Function [J]. Gene, 2012, 496(2): 69-78.
[59] JACOBS S A, KHORASANIZADEH S. Structure of HP1 Chromodomain Bound to a Lysine 9-Methylated Histone H3 Tail [J]. Science, 2002, 295(5562): 2080-2083.
[60] SANCHEZ R, ZHOU M M. The PHD Finger: a Versatile Epigenome Reader [J]. Trends in Biochemical Sciences, 2011, 36(7): 364-372.
[61] UNIPROT C. UniProt: a Worldwide Hub of Protein Knowledge [J]. Nucleic Acids Research, 2019, 47(D1): D506-D515.
[62] FIELDS S, STERNGLANZ R. The Two-Hybrid System: an Assay for Protein-Protein Interactions [J]. Trends in Genetics, 1994, 10(8): 286-292.
[63] PARRISH J R, GULYAS K D, FINLEY R L. Yeast Two-Hybrid Contributions to Interactome Mapping [J]. Current Opinion in Biotechnology, 2006, 17(4): 387-393.
[64] GINGRAS A C, GSTAIGER M, RAUGHT B, et al. Analysis of Protein Complexes Using Mass Spectrometry [J]. Nature Reviews Molecular Cell Biology, 2007, 8(8): 645-654.
[65] MERING C, KRAUSE R, SNEL B, et al. Comparative Assessment of Large-Scale Data Sets of Protein-Protein Interactions [J]. Nature, 2002, 417(6887): 399-403.
[66] AEBERSOLD R, MANN M. Mass-Spectrometric Exploration of Proteome Structure and Function [J]. Nature, 2016, 537(7620): 347-355.
[67] HUTTLIN E L, BRUCKNER R J, PAULO J A, et al. Architecture of the Human Interactome Defines Protein Communities and Disease Networks [J]. Nature, 2017, 545(7655): 505-509.
[68] MITEVA Y V, BUDAYEVA H G, CRISTEA I M. Proteomics-Based Methods for Discovery, Quantification, and Validation of Protein-Protein Interactions [J]. Analytical Chemistry, 2013, 85(2): 749-768.
[69] KRATCHMAROVA I, BLAGOEV B, HAACK-SORENSEN M, et al. Mechanism of Divergent Growth Factor Effects in Mesenchymal Stem Cell Differentiation [J]. Science, 2005, 308(5727): 1472-1477.
[70] BLAGOEV B, KRATCHMAROVA I, ONG S E, et al. A Proteomics Strategy to Elucidate Functional Protein-Protein Interactions Applied to EGF Signaling [J]. Nature Biotechnology, 2003, 21(3): 315-318.
[71] HIMEDA C L, RANISH J A, ANGELLO J C, et al. Quantitative Proteomic Identification of Six4 as the Trex-Binding Factor in the Muscle Creatine Kinase Enhancer [J]. Molecular and Cellular Biology, 2004, 24(5): 2132-2143.
[72] RANISH J A, HAHN S, LU Y, et al. Identification of TFB5, a New Component of General Transcription and DNA Repair Factor IIH [J]. Nature Genetics, 2004, 36(7): 707-713.
[73] BRAND M, RANISH J A, KUMMER N T, et al. Dynamic Changes in Transcription Factor Complexes During Erythroid Differentiation Revealed by Quantitative Proteomics [J]. Nature Structure and Molecular Biology, 2004, 11(1): 73-80.
[74] HOPP T P, PRICKETT K S, PRICE V L, et al. A Short Polypeptide Marker Sequence Useful for Recombinant Protein Identification and Purification [J]. Nature Biotechnology, 1988, 6(10): 1204-1210.
[75] MALHOTRA A. Tagging for Protein Expression [J]. Methods in Enzymology, 2009, 463: 239-258.
[76] GORDON D E, JANG G M, BOUHADDOU M, et al. A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing [J]. Nature, 2020, 583(7816): 459-468.
[77] ZHENG J, CHEN X, YANG Y, et al. Mass Spectrometry-Based Protein Complex Profiling in Time and Space [J]. Analytical Chemistry, 2021, 93(1): 598-619.
[78] VANDEMOORTELE G, EYCKERMAN S, GEVAERT K. Pick a Tag and Explore the Functions of Your Pet Protein [J]. Trends in Biotechnology, 2019, 37(10): 1078-1090.
[79] GAVIN A C, BOSCHE M, KRAUSE R, et al. Functional Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes [J]. Nature, 2002, 415(6868): 141-147.
[80] HO Y, GRUHLER A, HEILBUT A, et al. Systematic Identification of Protein Complexes in Saccharomyces Cerevisiae by Mass Spectrometry [J]. Nature, 2002, 415(6868): 180-183.
[81] KROGAN N J, CAGNEY G, YU H, et al. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae [J]. Nature, 2006, 440(7084): 637-643.
[82] HU P, JANGA S C, BABU M, et al. Global Functional Atlas of Escherichia Coli Encompassing Previously Uncharacterized Proteins [J]. PLoS Biology, 2009, 7(4): e96.
[83] KUHNER S, VAN NOORT V, BETTS M J, et al. Proteome Organization in a Genome-Reduced Bacterium [J]. Science, 2009, 326(5957): 1235-1240.
[84] GURUHARSHA K G, RUAL J F, ZHAI B, et al. A Protein Complex Network of Drosophila Melanogaster [J]. Cell, 2011, 147(3): 690-703.
[85] BOUWMEESTER T, BAUCH A, RUFFNER H, et al. A Physical and Functional Map of the Human TNF-Alpha/NF-Kappa B Signal Transduction Pathway [J]. Nature Cell Biology, 2004, 6(2): 97-105.
[86] EWING R M, CHU P, ELISMA F, et al. Large-Scale Mapping of Human Protein-Protein Interactions by Mass Spectrometry [J]. Molecular Systems Biology, 2007, 3: 89.
[87] MALOVANNAYA A, LANZ R B, JUNG S Y, et al. Analysis of the Human Endogenous Coregulator Complexome [J]. Cell, 2011, 145(5): 787-799.
[88] HUTTLIN E L, TING L, BRUCKNER R J, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome [J]. Cell, 2015, 162(2): 425-440.
[89] HEIN M Y, HUBNER N C, POSER I, et al. A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances [J]. Cell, 2015, 163(3): 712-723.
[90] HUTTLIN E L, BRUCKNER R J, NAVARRETE-PEREA J, et al. Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome [J]. Cell, 2021, 184(11): 3022-3040.
[91] UNIPROT C. UniProt: a Hub for Protein Information [J]. Nucleic Acids Research, 2015, 43(Database issue): D204-D212.
[92] HAVUGIMANA P C, HART G T, NEPUSZ T, et al. A Census of Human Soluble Protein Complexes [J]. Cell, 2012, 150(5): 1068-1081.
[93] MERGNER J, FREJNO M, LIST M, et al. Mass-Spectrometry-Based Draft of the Arabidopsis Proteome [J]. Nature, 2020, 579(7799): 409-414.
[94] WAN C, BORGESON B, PHANSE S, et al. Panorama of Ancient Metazoan Macromolecular Complexes [J]. Nature, 2015, 525(7569): 339-344.
[95] HEUSEL M, BLUDAU I, ROSENBERGER G, et al. Complex-Centric Proteome Profiling by SEC-SWATH-MS [J]. Molecular Systems Biology, 2019, 15(1): e8438.
[96] BLUDAU I, HEUSEL M, FRANK M, et al. Complex-Centric Proteome Profiling by SEC-SWATH-MS for the Parallel Detection of Hundreds of Protein Complexes [J]. Nature Protocol, 2020, 15(8): 2341-2386.
[97] HEUSEL M, FRANK M, KOHLER M, et al. A Global Screen for Assembly State Changes of the Mitotic Proteome by SEC-SWATH-MS [J]. Cell Systems, 2020, 10(2): 133-155.
[98] KERR C H, SKINNIDER M A, ANDREWS D D T, et al. Dynamic Rewiring of the Human Interactome by Interferon Signaling [J]. Genome Biology, 2020, 21(1): 140.
[99] KRISTENSEN A R, GSPONER J, FOSTER L J. A High-Throughput Approach for Measuring Temporal Changes in the Interactome [J]. Nature Methods, 2012, 9(9): 907-909.
[100] MCWHITE C D, PAPOULAS O, DREW K, et al. A Pan-Plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies [J]. Cell, 2020, 181(2): 460-474.
[101] LARANCE M, KIRKWOOD K J, TINTI M, et al. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-Based Protein Correlation Profiling [J]. Molecular and Cellular Proteomics, 2016, 15(7): 2476-2490.
[102] WANG Y, HU Y, HOTI N, et al. Characterization of in Vivo Protein Complexes via Chemical Cross-Linking and Mass Spectrometry [J]. Analytical Chemistry, 2022, 94(3): 1537-1542.
[103] CARLSON M L, STACEY R G, YOUNG J W, et al. Profiling the Escherichia Coli Membrane Protein Interactome Captured in Peptidisc Libraries [J]. Elife, 2019, 8: e46615.
[104] SALAS D, STACEY R G, AKINLAJA M, et al. Next-Generation Interactomics: Considerations for the Use of Co-Elution to Measure Protein Interaction Networks [J]. Molecular and Cellular Proteomics, 2020, 19(1): 1-10.
[105] STACEY R G, SKINNIDER M A, SCOTT N E, et al. A Rapid and Accurate Approach for Prediction of Interactomes from Co-Elution Data (PrInCE) [J]. BMC Bioinformatics, 2017, 18(1): 457.
[106] HU L Z, GOEBELS F, TAN J H, et al. EPIC: Software Toolkit for Elution Profile-Based Inference of Protein Complexes [J]. Nature Methods, 2019, 16(8): 737-742.
[107] FOSSATI A, LI C, ULIANA F, et al. PCprophet: a Framework for Protein Complex Prediction and Differential Analysis Using Proteomic Data [J]. Nature Methods, 2021, 18(5): 520-527.
[108] REES J S, LI X W, PERRETT S, et al. Protein Neighbors and Proximity Proteomics [J]. Molecular and Cellular Proteomics, 2015, 14(11): 2848-2856.
[109] CHAVEZ J D, BRUCE J E. Chemical Cross-Linking with Mass Spectrometry: a Tool for Systems Structural Biology [J]. Current Opinion in Chemical Biology, 2019, 48: 8-18.
[110] GOTZE M, IACOBUCCI C, IHLING C H, et al. A Simple Cross-Linking/Mass Spectrometry Workflow for Studying System-Wide Protein Interactions [J]. Analytical Chemistry, 2019, 91(15): 10236-10244.
[111] TAN C S H, GO K D, BISTEAU X, et al. Thermal Proximity Coaggregation for System-Wide Profiling of Protein Complex Dynamics in Cells [J]. Science, 2018, 359(6380): 1170-1177.
[112] ZHENG J, CHEN X, YANG Y, et al. Mass Spectrometry-Based Protein Complex Profiling in Time and Space [J]. Analytical Chemistry, 2020, 93(1): 598-619.
[113] FREI A P, JEON O Y, KILCHER S, et al. Direct Identification of Ligand-Receptor Interactions on Living Cells and Tissues [J]. Nature Biotechnology, 2012, 30(10): 997-1001.
[114] SLAVOFF S A, SAGHATELIAN A. Discovering Ligand-Receptor Interactions [J]. Nature Biotechnology, 2012, 30(10): 959-961.
[115] TREMBLAY T L, HILL J J. Biotin-Transfer from a Trifunctional Crosslinker for Identification of Cell Surface Receptors of Soluble Protein Ligands [J]. Scientific Reports, 2017, 7: 46574.
[116] SOBOTZKI N, SCHAFROTH M A, RUDNICKA A, et al. HATRIC-Based Identification of Receptors for Orphan Ligands [J]. Nature Communications, 2018, 9(1): 1519.
[117] HALLORAN M W, LUMB J P. Recent Applications of Diazirines in Chemical Proteomics [J]. Chemistry, 2019, 25(19): 4885-4898.
[118] MUSKENS F M, WARD R J, HERKT D, et al. Design, Synthesis, and Evaluation of a Diazirine Photoaffinity Probe for Ligand-Based Receptor Capture Targeting G Protein-Coupled Receptors [J]. Molecular Pharmacology, 2019, 95(2): 196-209.
[119] ZHANG Y, KAO D S, GU B, et al. Tracking Pathogen Infections by Time-Resolved Chemical Proteomics [J]. Angewandte Chemie International Edition, 2020, 59(6): 2235-2240.
[120] SRIVASTAVA M, ZHANG Y, CHEN J, et al. Chemical Proteomics Tracks Virus Entry and Uncovers NCAM1 as Zika Virus Receptor [J]. Nature Communications, 2020, 11(1): 3896.
[121] CHU B, HE A, TIAN Y, et al. Photoaffinity-Engineered Protein Scaffold for Systematically Exploring Native Phosphotyrosine Signaling Complexes in Tumor Samples [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(38): E8863-E8872.
[122] LEMMON M A, SCHLESSINGER J. Cell Signaling by Receptor Tyrosine Kinases [J]. Cell, 2010, 141(7): 1117-1134.
[123] DU Z, LOVLY C M. Mechanisms of Receptor Tyrosine Kinase Activation in Cancer [J]. Molecular Cancer, 2018, 17(1): 58.
[124] MARGIOTTA A. All Good Things Must End: Termination of Receptor Tyrosine Kinase Signal [J]. International Journal of Molecular Sciences, 2021, 22(12): 6342.
[125] SORKIN A, GOH L K. Endocytosis and Intracellular Trafficking of ErbBs [J]. Experimental Cell Research, 2009, 315(4): 683-696.
[126] ZASTROW M, SORKIN A. Signaling on the Endocytic Pathway [J]. Current Opinion in Cell Biology, 2007, 19(4): 436-445.
[127] WHEELER D L, DUNN E F, HARARI P M. Understanding Resistance to EGFR Inhibitors-Impact on Future Treatment Strategies [J]. Nature Reviews Clinical Oncology, 2010, 7(9): 493-507.
[128] WANG Z, LONGO P A, TARRANT M K, et al. Mechanistic Insights into the Activation of Oncogenic Forms of EGF Receptor [J]. Nature Structure and Molecular Biology, 2011, 18(12): 1388-1393.
[129] DRILON A, CLARK J W, WEISS J, et al. Antitumor Activity of Crizotinib in Lung Cancers Harboring a MET Exon 14 Alteration [J]. Nature Medicine, 2020, 26(1): 47-51.
[130] BRENNAN C W, VERHAAK R G, MCKENNA A, et al. The Somatic Genomic Landscape of Glioblastoma [J]. Cell, 2013, 155(2): 462-477.
[131] SHOLL L M, YEAP B Y, IAFRATE A J, et al. Lung Adenocarcinoma with EGFR Amplification Has Distinct Clinicopathologic and Molecular Features in Never-Smokers [J]. Cancer Research, 2009, 69(21): 8341-8348.
[132] COMOGLIO P M, TRUSOLINO L, BOCCACCIO C. Known and Novel Roles of the MET Oncogene in Cancer: a Coherent Approach to Targeted Therapy [J]. Nature Reviews Cancer, 2018, 18(6): 341-358.
[133] FLAVAHAN W A, DRIER Y, LIAU B B, et al. Insulator Dysfunction and Oncogene Activation in IDH Mutant Gliomas [J]. Nature, 2016, 529(7584): 110-114.
[134] KATOH M. Fibroblast Growth Factor Receptors as Treatment Targets in Clinical Oncology [J]. Nature Reviews Clinical Oncology, 2019, 16(2): 105-122.
[135] OH D Y, BANG Y J. HER2-Targeted Therapies - a Role beyond Breast Cancer [J]. Nature Reviews Clinical Oncology, 2020, 17(1): 33-48.
[136] INTERNATIONAL CANCER GENOME CONSORTIUM PEDBRAIN TUMOR PROJECT. Recurrent MET Fusion Genes Represent a Drug Target in Pediatric Glioblastoma [J]. Nature Medicine, 2016, 22(11): 1314-1320.
[137] SODA M, CHOI Y L, ENOMOTO M, et al. Identification of the Transforming EML4-ALK Fusion Gene in Non-Small-Cell Lung Cancer [J]. Nature, 2007, 448(7153): 561-566.
[138] KENTSIS A, REED C, RICE K L, et al. Autocrine Activation of the MET Receptor Tyrosine Kinase in Acute Myeloid Leukemia [J]. Nature Medicine, 2012, 18(7): 1118-1122.
[139] BHULLAR K S, LAGARON N O, MCGOWAN E M, et al. Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions [J]. Molecular Cancer, 2018, 17(1): 48.
[140] BOURNEZ C, CARLES F, PEYRAT G, et al. Comparative Assessment of Protein Kinase Inhibitors in Public Databases and in PKIDB [J]. Molecules, 2020, 25(14): 3226.
[141] COHEN P, CROSS D, JANNE P A. Kinase Drug Discovery 20 Years after Imatinib: Progress and Future Directions [J]. Nature Reviews Drug Discovery, 2021, 20(7): 551-569.
[142] RIELY G J, NEAL J W, CAMIDGE D R, et al. Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial [J]. Cancer Discovery, 2021, 11(7): 1688-1699.
[143] LIANG H, WANG M. MET Oncogene in Non-Small Cell Lung Cancer: Mechanism of MET Dysregulation and Agents Targeting the HGF/c-Met Axis [J]. Onco Targets and Therapy, 2020, 13: 2491-2510.
[144] WOOD G E, HOCKINGS H, HILTON D M, et al. The Role of MET in Chemotherapy Resistance [J]. Oncogene, 2021, 40(11): 1927-1941.
[145] FUJINO T, KOBAYASHI Y, SUDA K, et al. Sensitivity and Resistance of MET Exon 14 Mutations in Lung Cancer to Eight MET Tyrosine Kinase Inhibitors In Vitro [J]. Journal of Thoracic Oncology, 2019, 14(10): 1753-1765.
[146] GUO R, LUO J, CHANG J, et al. MET-Dependent Solid Tumours - Molecular Diagnosis and Targeted Therapy [J]. Nature Reviews Clinical Oncology, 2020, 17(9): 569-587.
[147] ROSKOSKI R. Classification of Small Molecule Protein Kinase Inhibitors Based upon the Structures of Their Drug-Enzyme Complexes [J]. Pharmacological Research, 2016, 103: 26-48.
[148] NIEDERST M J, ENGELMAN J A. Bypass Mechanisms of Resistance to Receptor Tyrosine Kinase Inhibition in Lung Cancer [J]. Science Signaling, 2013, 6(294): re6.
[149] VASILESCU J, SMITH J C, ETHIER M, et al. Proteomic Analysis of Ubiquitinated Proteins from Human MCF-7 Breast Cancer Cells by Immunoaffinity Purification and Mass Spectrometry [J]. Journal of Proteome Research, 2005, 4(6): 2192-2200.
[150] BOISVERT F M, COTE J, BOULANGER M C, et al. A Proteomic Analysis of Arginine-Methylated Protein Complexes [J]. Molecular and Cellular Proteomics, 2003, 2(12): 1319-1330.
[151] LI X, FOLEY E A, MOLLOY K R, et al. Quantitative Chemical Proteomics Approach to Identify Post-Translational Modification-Mediated Protein-Protein Interactions [J]. Journal of the American Chemical Society, 2012, 134(4): 1982-1985.
[152] LI X, FOLEY E A, KAWASHIMA S A, et al. Examining Post-Translational Modification-Mediated Protein-Protein Interactions Using a Chemical Proteomics Approach [J]. Protein Science, 2013, 22(3): 287-295.
[153] LIN J, BAO X, LI X D. A Tri-Functional Amino Acid Enables Mapping of Binding Sites for Posttranslational-Modification-Mediated Protein-Protein Interactions [J]. Molecular Cell, 2021, 81(12): 2669-2681.
[154] SUDHAMALLA B, DEY D, BRESKI M, et al. Site-Specific Azide-Acetyllysine Photochemistry on Epigenetic Readers for Interactome Profiling [J]. Chemical Science, 2017, 8(6): 4250-4256.
[155] KLEINER R E, HANG L E, MOLLOY K R, et al. A Chemical Proteomics Approach to Reveal Direct Protein-Protein Interactions in Living Cells [J]. Cell Chemical Biology, 2018, 25(1): 110-120.
[156] TANG H, DAI Z, QIN X, et al. Proteomic Identification of Protein Tyrosine Phosphatase and Substrate Interactions in Living Mammalian Cells by Genetic Encoding of Irreversible Enzyme Inhibitors [J]. Journal of the American Chemical Society, 2018, 140(41): 13253-13259.
[157] XIE X, LI X M, QIN F, et al. Genetically Encoded Photoaffinity Histone Marks [J]. Journal of the American Chemical Society, 2017, 139(19): 6522-6525.
[158] WANG J, LIU Y, LIU Y, et al. Time-Resolved Protein Activation by Proximal Decaging in Living Systems [J]. Nature, 2019, 569(7757): 509-513.
[159] WAGNER M J, STACEY M M, LIU B A, et al. Molecular Mechanisms of SH2- and PTB-Domain-Containing Proteins in Receptor Tyrosine Kinase Signaling [J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(12): a008987.
[160] SEET B T, DIKIC I, ZHOU M M, et al. Reading Protein Modifications with Interaction Domains [J]. Nature Reviews Molecular Cell Biology, 2006, 7(7): 473-483.
[161] ZHENG Z, CHU B, KONG Q, et al. High-Throughput Phosphotyrosine Protein Complexes Screening by Photoaffinity-Engineered Protein Scaffold-Based Forward-Phase Protein Array [J]. Analytical Chemistry, 2019, 91(15): 10026-10032.
[162] KONG Q, HUANG P, CHU B, et al. High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes [J]. Analytical Chemistry, 2020, 92(13): 8933-8942.
[163] MOORE K E, CARLSON S M, CAMP N D, et al. A General Molecular Affinity Strategy for Global Detection and Proteomic Analysis of Lysine Methylation [J]. Molecular Cell, 2013, 50(3): 444-456.
[164] LIU H, GALKA M, MORI E, et al. A Method for Systematic Mapping of Protein Lysine Methylation Identifies Functions for HP1beta in DNA Damage Response [J]. Molecular Cell, 2013, 50(5): 723-735.
[165] GAO Y, LI Y, ZHANG C, et al. Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-Binding Domains (ThUBDs) [J]. Molecular and Cellular Proteomics, 2016, 15(4): 1381-1396.
[166] ZHAN Y, SONG X, ZHOU G W. Structural Analysis of Regulatory Protein Domains Using GST-Fusion Proteins [J]. Gene, 2001, 281(1): 1-9.
[167] SCHAFER F, SEIP N, MAERTENS B, et al. Purification of GST-Tagged Proteins [J]. Methods in Enzymology, 2015, 559: 127-139.
[168] SMITH D B, JOHNSON K S. Single-Step Purification of Polypeptides Expressed in Escherichia Coli as Fusions with Glutathione S-Transferase [J]. Gene, 1988, 67(1): 31-40.
[169] BELL M R, ENGLEKA M J, MALIK A, et al. To Fuse or Not to Fuse: What Is Your Purpose? [J]. Protein Science, 2013, 22(11): 1466-1477.
[170] KE M, YUAN X, HE A, et al. Spatiotemporal Profiling of Cytosolic Signaling Complexes in Living Cells by Selective Proximity Proteomics [J]. Nature Communications, 2021, 12(1): 71.
[171] WANG S, ZHANG C, LI M, et al. A System-Wide Spatiotemporal Characterization of ErbB Receptor Complexes by Subcellular Fractionation Integrated Quantitative Mass Spectrometry [J]. Analytical Chemistry, 2021, 93(22): 7933-7941.
[172] KANEKO T, HUANG H, CAO X, et al. Superbinder SH2 Domains Act as Antagonists of Cell Signaling [J]. Science Signaling, 2012, 5(243): ra68.
[173] FRESE S, SCHUBERT W D, FINDEIS A C, et al. The Phosphotyrosine Peptide Binding Specificity of Nck1 and Nck2 Src Homology 2 Domains [J]. Journal of Biological Chemistry, 2006, 281(26): 18236-18245.
[174] BROWN M C, CARY L A, JAMIESON J S, et al. Src and FAK Kinases Cooperate to Phosphorylate Paxillin Kinase Linker, Stimulate Its Focal Adhesion Localization, and Regulate Cell Spreading and Protrusiveness [J]. Molecular Biology of the Cell, 2005, 16(9): 4316-4328.
[175] JACQUET K, BANERJEE S L, CHARTIER F J M, et al. Proteomic Analysis of NCK1/2 Adaptors Uncovers Paralog-Specific Interactions That Reveal a New Role for NCK2 in Cell Abscission During Cytokinesis [J]. Molecular and Cellular Proteomics, 2018, 17(10): 1979-1990.
[176] BREHME M, HANTSCHEL O, COLINGE J, et al. Charting the Molecular Network of the Drug Target Bcr-Abl [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7414-7419.
[177] LIU B A, ENGELMANN B W, JABLONOWSKI K, et al. SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF Receptor Mediated Signaling Networks Reveal an Extensive Potential Interactome [J]. Cell Communication and Signaling, 2012, 10(1): 27.
[178] YANG G, LI Q, REN S, et al. Proteomic, Functional and Motif-Based Analysis of C-Terminal Src Kinase-Interacting Proteins [J]. Proteomics, 2009, 9(21): 4944-4961.
[179] AMANCHY R, ZHONG J, HONG R, et al. Identification of c-Src Tyrosine Kinase Substrates in Platelet-Derived Growth Factor Receptor Signaling [J]. Molecular Oncology, 2009, 3(5): 439-450.
[180] KENNEDY S A, JARBOUI M A, SRIHARI S, et al. Extensive Rewiring of the EGFR Network in Colorectal Cancer Cells Expressing Transforming Levels of KRAS(G13D) [J]. Nature Communications, 2020, 11(1): 499.
[181] HARTEL N G, CHEW B, QIN J, et al. Deep Protein Methylation Profiling by Combined Chemical and Immunoaffinity Approaches Reveals Novel PRMT1 Targets [J]. Molecular and Cellular Proteomics, 2019, 18(11): 2149-2164.
[182] SECZYNSKA M, BLOOR S, CUESTA S M, et al. Genome Surveillance by HUSH-Mediated Silencing of Intronless Mobile Elements [J]. Nature, 2022, 601(7893): 440-445.
[183] CHANG Y, SUN L, KOKURA K, et al. MPP8 Mediates the Interactions between DNA Methyltransferase Dnmt3a and H3K9 Methyltransferase GLP/G9a [J]. Nature Communications, 2011, 2: 533.
[184] BULUT-KARSLIOGLU A, JIN H, KIM Y K, et al. Chd1 Protects Genome Integrity at Promoters to Sustain Hypertranscription in Embryonic Stem Cells [J]. Nature Communications, 2021, 12(1): 4859.
[185] MANNI W, JIANXIN X, WEIQI H, et al. JMJD Family Proteins in Cancer and Inflammation [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 304.
[186] MAY M R, BETTRIDGE J T, DESIDERIO S. Binding and Allosteric Transmission of Histone H3 Lys-4 Trimethylation to the Recombinase RAG-1 Are Separable Functions of the RAG-2 Plant Homeodomain Finger [J]. Journal of Biological Chemistry, 2020, 295(27): 9052-9060.
[187] ARORA S, HORNE W S, ISLAM K. Engineering Methyllysine Writers and Readers for Allele-Specific Regulation of Protein-Protein Interactions [J]. Journal of the American Chemical Society, 2019, 141(39): 15466-15470.
[188] GSELL C, RICHLY H, COIN F, et al. A Chromatin Scaffold for DNA Damage Recognition: How Histone Methyltransferases Prime Nucleosomes for Repair of Ultraviolet Light-Induced Lesions [J]. Nucleic Acids Research, 2020, 48(4): 1652-1668.
[189] DIX M M, SIMON G M, CRAVATT B F. Global Mapping of the Topography and Magnitude of Proteolytic Events in Apoptosis [J]. Cell, 2008, 134(4): 679-691.
[190] YANG Y Y, GRAMMEL M, RAGHAVAN A S, et al. Comparative Analysis of Cleavable Azobenzene-Based Affinity Tags for Bioorthogonal Chemical Proteomics [J]. Chemical and Biology, 2010, 17(11): 1212-1222.
[191] VERHELST S H, FONOVIC M, BOGYO M. A Mild Chemically Cleavable Linker System for Functional Proteomic Applications [J]. Angewandte Chemie International Edition, 2007, 46(8): 1284-1286.
[192] WILLIAMS C C, ALLISON J G, VIDAL G A, et al. The ERBB4/HER4 Receptor Tyrosine Kinase Regulates Gene Expression by Functioning as a STAT5A Nuclear Chaperone [J]. Journal of Cell Biology, 2004, 167(3): 469-478.
[193] DOU H, BUETOW L, HOCK A, et al. Structural Basis for Autoinhibition and Phosphorylation-Dependent Activation of c-Cbl [J]. Nature Structure and Molecular Biology, 2012, 19(2): 184-192.
[194] ZHOU M M, RAVICHANDRAN K S, OLEJNICZAK E F, et al. Structure and Ligand Recognition of the Phosphotyrosine Binding Domain of Shc [J]. Nature, 1995, 378(6557): 584-592.
[195] PETSCHNIGG J, GROISMAN B, KOTLYAR M, et al. The Mammalian-Membrane Two-Hybrid Assay (MaMTH) for Probing Membrane-Protein Interactions in Human Cells [J]. Nature Methods, 2014, 11(5): 585-592.
[196] SARAON P, SNIDER J, KALAIDZIDIS Y, et al. A Drug Discovery Platform to Identify Compounds That Inhibit EGFR Triple Mutants [J]. Nature Chemical Biology, 2020, 16(5): 577-586.
[197] LANDI L, MINUTI G, D'INCECCO A, et al. Targeting c-MET in the Battle Against Advanced Nonsmall-Cell Lung Cancer [J]. Current Opinion in Oncology, 2013, 25(2): 130-136.
[198] ORGAN S L, TSAO M S. An Overview of the c-MET Signaling Pathway [J]. Therapeutic Advances in Medical Oncology, 2011, 3(1 Suppl): S7-S19.
[199] ROSKOSKI R, JR. Orally Effective FDA-Approved Protein Kinase Targeted Covalent Inhibitors (TCIs) [J]. Pharmacological Research, 2021, 165: 105422.
[200] ENGELMAN J A, ZEJNULLAHU K, GALE C M, et al. PF00299804, an Irreversible Pan-ERBB Inhibitor, Is Effective in Lung Cancer Models with EGFR and ERBB2 Mutations That Are Resistant to Gefitinib [J]. Cancer Research, 2007, 67(24): 11924-11932.
[201] LI D, AMBROGIO L, SHIMAMURA T, et al. BIBW2992, an Irreversible EGFR/HER2 Inhibitor Highly Effective in Preclinical Lung Cancer Models [J]. Oncogene, 2008, 27(34): 4702-4711.
[202] LI S, COUVILLON A D, BRASHER B B, et al. Tyrosine Phosphorylation of Grb2 by Bcr/Abl and Epidermal Growth Factor Receptor: a Novel Regulatory Mechanism for Tyrosine Kinase Signaling [J]. The EMBO Journal, 2001, 20(23): 6793-6804.
[203] POULIN B, SEKIYA F, RHEE S G. Intramolecular Interaction between Phosphorylated Tyrosine-783 and the C-Terminal Src Homology 2 Domain Activates Phospholipase C-Gamma1 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(12): 4276-4281.
[204] OLSEN J V, BLAGOEV B, GNAD F, et al. Global, in Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks [J]. Cell, 2006, 127(3): 635-648.
[205] CHAN P C, SUDHAKAR J N, LAI C C, et al. Differential Phosphorylation of the Docking Protein Gab1 by c-Src and the Hepatocyte Growth Factor Receptor Regulates Different Aspects of Cell Functions [J]. Oncogene, 2010, 29(5): 698-710.
[206] PFEIFFER A, FRANCIOSA G, LOCARD-PAULET M, et al. Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD-Driven AML [J]. Cancer Research, 2022, 82(11): 2141-2155.

所在学位评定分委会
化学
国内图书分类号
O657.63
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545313
专题南方科技大学
理学院_化学系
推荐引用方式
GB/T 7714
秦韵秋. 基于三功能探针对蛋白质复合物的深度分析及应用[D]. 哈尔滨. 哈尔滨工业大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849611-秦韵秋-化学系.pdf(8608KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[秦韵秋]的文章
百度学术
百度学术中相似的文章
[秦韵秋]的文章
必应学术
必应学术中相似的文章
[秦韵秋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。