[1] BLUDAU I, AEBERSOLD R. Proteomic and Interactomic Insights into the Molecular Basis of Cell Functional Diversity [J]. Nature Reviews Molecular Cell Biology, 2020, 21(6): 327-340.
[2] ROSS K E, HUANG H, REN J, et al. iPTMnet: Integrative Bioinformatics for Studying PTM Networks [J]. Methods in Molecular Biology, 2017, 1558: 333-353.
[3] AEBERSOLD R, AGAR J N, AMSTER I J, et al. How Many Human Proteoforms Are There? [J]. Nature Chemical Biology, 2018, 14(3): 206-214.
[4] LUCK K, KIM D K, LAMBOURNE L, et al. A Reference Map of the Human Binary Protein Interactome [J]. Nature, 2020, 580(7803): 402-408.
[5] DERIBE Y L, PAWSON T, DIKIC I. Post-Translational Modifications in Signal Integration [J]. Nature Structure and Molecular Biology, 2010, 17(6): 666-672.
[6] HUNTER T. A Journey from Phosphotyrosine to Phosphohistidine and Beyond [J]. Molecular Cell, 2022, 82(12): 2190-2200.
[7] DUAN G, WALTHER D. The Roles of Post-Translational Modifications in the Context of Protein Interaction Networks [J]. PLoS Computational Biology, 2015, 11(2): e1004049.
[8] MANNING G, WHYTE D B, MARTINEZ R, et al. The Protein Kinase Complement of the Human Genome [J]. Science, 2002, 298(5600): 1912-1934.
[9] HUNTER T, SEFTON B M. Transforming Gene Product of Rous Sarcoma Virus Phosphorylates Tyrosine [J]. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(3): 1311-1315.
[10] HUNTER T. Tyrosine Phosphorylation: Thirty Years and Counting [J]. Current Opinion in Cell Biology, 2009, 21(2): 140-146.
[11] LIM W A, PAWSON T. Phosphotyrosine Signaling: Evolving a New Cellular Communication System [J]. Cell, 2010, 142(5): 661-667.
[12] HOPPMANN C, WONG A, YANG B, et al. Site-Specific Incorporation of Phosphotyrosine Using an Expanded Genetic Code [J]. Nature Chemical Biology, 2017, 13(8): 842-844.
[13] HUNTER T. The Genesis of Tyrosine Phosphorylation [J]. Cold Spring Harbor Perspectives in Biology, 2014, 6(5): a020644.
[14] KLEIMAN L B, MAIWALD T, CONZELMANN H, et al. Rapid Phospho-Turnover by Receptor Tyrosine Kinases Impacts Downstream Signaling and Drug Binding [J]. Molecular Cell, 2011, 43(5): 723-737.
[15] ECKHART W, HUTCHINSON M A, HUNTER T. An Activity Phosphorylating Tyrosine in Polyoma T Antigen Immunoprecipitates [J]. Cell, 1979, 18(4): 925-933.
[16] PAWSON T. Specificity in Signal Transduction: From Phosphotyrosine-SH2 Domain Interactions to Complex Cellular System [J]. Cell, 2004, 116(2): 191-203.
[17] CZERNILOFSKY A P, LEVINSON A D, VARMUS H E, et al. Nucleotide Sequence of an Avian Sarcoma Virus Oncogene (Src) and Proposed Amino Acid Sequence for Gene Product [J]. Nature, 1980, 287(5779): 198-203.
[18] CHARBONNEAU H, TONKS N K, KUMAR S, et al. Human Placenta Protein-Tyrosine-Phosphatase: Amino Acid Sequence and Relationship to a Family of Receptor-Like Proteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(14): 5252-5256.
[19] GUAN K L, HAUN R S, WATSON S J, et al. Cloning and Expression of a Protein-Tyrosine-Phosphatase [J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(4): 1501-1505.
[20] ALONSO A, SASIN J, BOTTINI N, et al. Protein Tyrosine Phosphatases in the Human Genome [J]. Cell, 2004, 117(6): 699-711.
[21] TONKS N K. Protein Tyrosine Phosphatases: from Genes, to Function, to Disease [J]. Nature Reviews Molecular Cell Biology, 2006, 7(11): 833-846.
[22] SADOWSKI I, STONE J C, PAWSON T. A Noncatalytic Domain Conserved among Cytoplasmic Protein-Tyrosine Kinases Modifies the Kinase Function and Transforming Activity of Fujinami Sarcoma Virus P130gag-Fps [J]. Molecular and Cellular Biology, 1986, 6(12): 4396-4408.
[23] LIU B A, SHAH E, JABLONOWSKI K, et al. The SH2 Domain-Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes [J]. Science Signaling, 2011, 4(202): ra83.
[24] KANEKO T, JOSHI R, FELLER S M, S et al. Phosphotyrosine Recognition Domains: the Typical, the Atypical and the Versatile [J]. Cell Communication and Signaling, 2012, 10(1): 32-53.
[25] KAVANAUGH W M, WILLIAMS L T. An Alternative to SH2 Domains for Binding Tyrosine-Phosphorylated Proteins [J]. Science, 1994, 266(5192): 1862-1865.
[26] UHLIK M T, TEMPLE B, BENCHARIT S, et al. Structural and Evolutionary Division of Phosphotyrosine Binding (PTB) Domains [J]. Journal of Molecular Biology, 2005, 345(1): 1-20.
[27] SMITH M J, HARDY W R, MURPHY J M, et al. Screening for PTB Domain Binding Partners and Ligand Specificity Using Proteome-Derived NPXY Peptide Arrays [J]. Molecular and Cellular Biology, 2006, 26(22): 8461-8474.
[28] BENES C H, WU N, ELIA A E, et al. The C2 Domain of PKCdelta Is a Phosphotyrosine Binding Domain [J]. Cell, 2005, 121(2): 271-280.
[29] CHRISTOFK H R, HEIDEN M G V, WU N, et al. Pyruvate Kinase M2 Is a Phosphotyrosine-Binding Protein [J]. Nature, 2008, 452(7184): 181-186.
[30] FUHRMANN J, CLANCY K W, THOMPSON P R. Chemical Biology of Protein Arginine Modifications in Epigenetic Regulation [J]. Chemical Reviews, 2015, 115(11): 5413-5461.
[31] MURN J, SHI Y. The Winding Path of Protein Methylation Research: Milestones and New Frontiers [J]. Nature Reviews Molecular Cell Biology, 2017, 18(8): 517-527.
[32] AMBLER R P, REES M W. Epsilon-N-Methyl-Lysine in Bacterial Flagellar Protein [J]. Nature, 1959, 184: 56-57.
[33] MURRAY K. The Occurrence of Epsilon-N-Methyl Lysine in Histones [J]. Biochemistry, 1964, 3: 10-15.
[34] HORNBECK P V, ZHANG B, MURRAY B, et al. PhosphoSitePlus, 2014: Mutations, PTMs and Recalibrations [J]. Nucleic Acids Research, 2015, 43(Database issue): D512-D520.
[35] BEDFORD M T, RICHARD S. Arginine Methylation an Emerging Regulator of Protein Function [J]. Molecular Cell, 2005, 18(3): 263-272.
[36] BIGGAR K K, LI S S. Non-Histone Protein Methylation as a Regulator of Cellular Signalling and Function [J]. Nature Reviews Molecular Cell Biology, 2015, 16(1): 5-17.
[37] WANG K, ZHOU Y J, LIU H, et al. Proteomic Analysis of Protein Methylation in the Yeast Saccharomyces Cerevisiae [J]. Journal of Proteomics, 2015, 114: 226-233.
[38] GREER E L, SHI Y. Histone Methylation: a Dynamic Mark in Health, Disease and Inheritance [J]. Nature Reviews Genetics, 2012, 13(5): 343-357.
[39] CORNETT E M, FERRY L, DEFOSSEZ P-A, et al. Lysine Methylation Regulators Moonlighting outside the Epigenome [J]. Molecular Cell, 2019, 75(6): 1092-1101.
[40] BIGGAR K K, WANG Z, LI S S. SnapShot: Lysine Methylation beyond Histones [J]. Molecular Cell, 2017, 68(5): 1016.
[41] KACHIRSKAIA I, SHI X, YAMAGUCHI H, et al. Role for 53BP1 Tudor Domain Recognition of p53 Dimethylated at Lysine 382 in DNA Damage Signaling [J]. Journal of Biological Chemistry, 2008, 283(50): 34660-34666.
[42] HUANG J, SENGUPTA R, ESPEJO A B, et al. p53 is Regulated by the Lysine Demethylase LSD1 [J]. Nature, 2007, 449(7158): 105-108.
[43] LUO M. Chemical and Biochemical Perspectives of Protein Lysine Methylation [J]. Chemical Reviews, 2018, 118(14): 6656-6705.
[44] TACHIBANA M, SUGIMOTO K, FUKUSHIMA T, et al. Set Domain-Containing Protein, G9a, Is a Novel Lysine-Preferring Mammalian Histone Methyltransferase with Hyperactivity and Specific Selectivity to Lysines 9 and 27 of Histone H3 [J]. Journal of Biological Chemistry, 2001, 276(27): 25309-25317.
[45] WANG R, LUO M. A Journey toward Bioorthogonal Profiling of Protein Methylation inside Living Cells [J]. Current Opinion in Chemical Biology, 2013, 17(5): 729-737.
[46] SHI Y, LAN F, MATSON C, et al. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1 [J]. Cell, 2004, 119(7): 941-953.
[47] TSUKADA Y, FANG J, ERDJUMENT-BROMAGE H, et al. Histone Demethylation by a Family of JmjC Domain-Containing Proteins [J]. Nature, 2006, 439(7078): 811-816.
[48] KANISKAN H U, MARTINI M L, JIN J. Inhibitors of Protein Methyltransferases and Demethylases [J]. Chemical Reviews, 2018, 118(3): 989-1068.
[49] POLEVODA B, SHERMAN F. Methylation of Proteins Involved in Translation [J]. Molecular Microbiology, 2007, 65(3): 590-606.
[50] MAURER-STROH S, DICKENS N J, HUGHES-DAVIES L, et al. The Tudor Domain ‘Royal Family’: Tudor, Plant Agenet, Chromo, PWWP and MBT Domains [J]. Trends in Biochemical Sciences, 2003, 28(2): 69-74.
[51] BEAVER J E, WATERS M L. Molecular Recognition of Lys and Arg Methylation [J]. ACS Chemical Biology, 2016, 11(3): 643-653.
[52] MIN J, ALLALI-HASSANI A, NADY N, et al. L3MBTL1 Recognition of Mono- and Dimethylated Histones [J]. Nature Structure and Molecular Biology, 2007, 14(12): 1229-1230.
[53] LASKO P. Tudor Domain [J]. Current Biology, 2010, 20(16): R666-R667.
[54] ZAWARE N, ZHOU M M. Chemical Modulators for Epigenome Reader Domains as Emerging Epigenetic Therapies for Cancer and Inflammation [J]. Current Opinion in Chemical Biology, 2017, 39: 116-125.
[55] BOTUYAN M V, LEE J, WARD I M, et al. Structural Basis for the Methylation State-Specific Recognition of Histone H4-K20 by 53BP1 and Crb2 in DNA Repair [J]. Cell, 2006, 127(7): 1361-1373.
[56] MEYER-NAVA S, NIETO-CABALLERO V E, ZURITA M, et al. Insights into HP1a-Chromatin Interactions [J]. Cells, 2020, 9(8):1866.
[57] CORNETT E M, FERRY L, DEFOSSEZ P A, et al. Lysine Methylation Regulators Moonlighting outside the Epigenome [J]. Molecular Cell, 2019, 75(6): 1092-1101.
[58] EISSENBERG J C. Structural Biology of the Chromodomain: Form and Function [J]. Gene, 2012, 496(2): 69-78.
[59] JACOBS S A, KHORASANIZADEH S. Structure of HP1 Chromodomain Bound to a Lysine 9-Methylated Histone H3 Tail [J]. Science, 2002, 295(5562): 2080-2083.
[60] SANCHEZ R, ZHOU M M. The PHD Finger: a Versatile Epigenome Reader [J]. Trends in Biochemical Sciences, 2011, 36(7): 364-372.
[61] UNIPROT C. UniProt: a Worldwide Hub of Protein Knowledge [J]. Nucleic Acids Research, 2019, 47(D1): D506-D515.
[62] FIELDS S, STERNGLANZ R. The Two-Hybrid System: an Assay for Protein-Protein Interactions [J]. Trends in Genetics, 1994, 10(8): 286-292.
[63] PARRISH J R, GULYAS K D, FINLEY R L. Yeast Two-Hybrid Contributions to Interactome Mapping [J]. Current Opinion in Biotechnology, 2006, 17(4): 387-393.
[64] GINGRAS A C, GSTAIGER M, RAUGHT B, et al. Analysis of Protein Complexes Using Mass Spectrometry [J]. Nature Reviews Molecular Cell Biology, 2007, 8(8): 645-654.
[65] MERING C, KRAUSE R, SNEL B, et al. Comparative Assessment of Large-Scale Data Sets of Protein-Protein Interactions [J]. Nature, 2002, 417(6887): 399-403.
[66] AEBERSOLD R, MANN M. Mass-Spectrometric Exploration of Proteome Structure and Function [J]. Nature, 2016, 537(7620): 347-355.
[67] HUTTLIN E L, BRUCKNER R J, PAULO J A, et al. Architecture of the Human Interactome Defines Protein Communities and Disease Networks [J]. Nature, 2017, 545(7655): 505-509.
[68] MITEVA Y V, BUDAYEVA H G, CRISTEA I M. Proteomics-Based Methods for Discovery, Quantification, and Validation of Protein-Protein Interactions [J]. Analytical Chemistry, 2013, 85(2): 749-768.
[69] KRATCHMAROVA I, BLAGOEV B, HAACK-SORENSEN M, et al. Mechanism of Divergent Growth Factor Effects in Mesenchymal Stem Cell Differentiation [J]. Science, 2005, 308(5727): 1472-1477.
[70] BLAGOEV B, KRATCHMAROVA I, ONG S E, et al. A Proteomics Strategy to Elucidate Functional Protein-Protein Interactions Applied to EGF Signaling [J]. Nature Biotechnology, 2003, 21(3): 315-318.
[71] HIMEDA C L, RANISH J A, ANGELLO J C, et al. Quantitative Proteomic Identification of Six4 as the Trex-Binding Factor in the Muscle Creatine Kinase Enhancer [J]. Molecular and Cellular Biology, 2004, 24(5): 2132-2143.
[72] RANISH J A, HAHN S, LU Y, et al. Identification of TFB5, a New Component of General Transcription and DNA Repair Factor IIH [J]. Nature Genetics, 2004, 36(7): 707-713.
[73] BRAND M, RANISH J A, KUMMER N T, et al. Dynamic Changes in Transcription Factor Complexes During Erythroid Differentiation Revealed by Quantitative Proteomics [J]. Nature Structure and Molecular Biology, 2004, 11(1): 73-80.
[74] HOPP T P, PRICKETT K S, PRICE V L, et al. A Short Polypeptide Marker Sequence Useful for Recombinant Protein Identification and Purification [J]. Nature Biotechnology, 1988, 6(10): 1204-1210.
[75] MALHOTRA A. Tagging for Protein Expression [J]. Methods in Enzymology, 2009, 463: 239-258.
[76] GORDON D E, JANG G M, BOUHADDOU M, et al. A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing [J]. Nature, 2020, 583(7816): 459-468.
[77] ZHENG J, CHEN X, YANG Y, et al. Mass Spectrometry-Based Protein Complex Profiling in Time and Space [J]. Analytical Chemistry, 2021, 93(1): 598-619.
[78] VANDEMOORTELE G, EYCKERMAN S, GEVAERT K. Pick a Tag and Explore the Functions of Your Pet Protein [J]. Trends in Biotechnology, 2019, 37(10): 1078-1090.
[79] GAVIN A C, BOSCHE M, KRAUSE R, et al. Functional Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes [J]. Nature, 2002, 415(6868): 141-147.
[80] HO Y, GRUHLER A, HEILBUT A, et al. Systematic Identification of Protein Complexes in Saccharomyces Cerevisiae by Mass Spectrometry [J]. Nature, 2002, 415(6868): 180-183.
[81] KROGAN N J, CAGNEY G, YU H, et al. Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae [J]. Nature, 2006, 440(7084): 637-643.
[82] HU P, JANGA S C, BABU M, et al. Global Functional Atlas of Escherichia Coli Encompassing Previously Uncharacterized Proteins [J]. PLoS Biology, 2009, 7(4): e96.
[83] KUHNER S, VAN NOORT V, BETTS M J, et al. Proteome Organization in a Genome-Reduced Bacterium [J]. Science, 2009, 326(5957): 1235-1240.
[84] GURUHARSHA K G, RUAL J F, ZHAI B, et al. A Protein Complex Network of Drosophila Melanogaster [J]. Cell, 2011, 147(3): 690-703.
[85] BOUWMEESTER T, BAUCH A, RUFFNER H, et al. A Physical and Functional Map of the Human TNF-Alpha/NF-Kappa B Signal Transduction Pathway [J]. Nature Cell Biology, 2004, 6(2): 97-105.
[86] EWING R M, CHU P, ELISMA F, et al. Large-Scale Mapping of Human Protein-Protein Interactions by Mass Spectrometry [J]. Molecular Systems Biology, 2007, 3: 89.
[87] MALOVANNAYA A, LANZ R B, JUNG S Y, et al. Analysis of the Human Endogenous Coregulator Complexome [J]. Cell, 2011, 145(5): 787-799.
[88] HUTTLIN E L, TING L, BRUCKNER R J, et al. The BioPlex Network: A Systematic Exploration of the Human Interactome [J]. Cell, 2015, 162(2): 425-440.
[89] HEIN M Y, HUBNER N C, POSER I, et al. A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances [J]. Cell, 2015, 163(3): 712-723.
[90] HUTTLIN E L, BRUCKNER R J, NAVARRETE-PEREA J, et al. Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome [J]. Cell, 2021, 184(11): 3022-3040.
[91] UNIPROT C. UniProt: a Hub for Protein Information [J]. Nucleic Acids Research, 2015, 43(Database issue): D204-D212.
[92] HAVUGIMANA P C, HART G T, NEPUSZ T, et al. A Census of Human Soluble Protein Complexes [J]. Cell, 2012, 150(5): 1068-1081.
[93] MERGNER J, FREJNO M, LIST M, et al. Mass-Spectrometry-Based Draft of the Arabidopsis Proteome [J]. Nature, 2020, 579(7799): 409-414.
[94] WAN C, BORGESON B, PHANSE S, et al. Panorama of Ancient Metazoan Macromolecular Complexes [J]. Nature, 2015, 525(7569): 339-344.
[95] HEUSEL M, BLUDAU I, ROSENBERGER G, et al. Complex-Centric Proteome Profiling by SEC-SWATH-MS [J]. Molecular Systems Biology, 2019, 15(1): e8438.
[96] BLUDAU I, HEUSEL M, FRANK M, et al. Complex-Centric Proteome Profiling by SEC-SWATH-MS for the Parallel Detection of Hundreds of Protein Complexes [J]. Nature Protocol, 2020, 15(8): 2341-2386.
[97] HEUSEL M, FRANK M, KOHLER M, et al. A Global Screen for Assembly State Changes of the Mitotic Proteome by SEC-SWATH-MS [J]. Cell Systems, 2020, 10(2): 133-155.
[98] KERR C H, SKINNIDER M A, ANDREWS D D T, et al. Dynamic Rewiring of the Human Interactome by Interferon Signaling [J]. Genome Biology, 2020, 21(1): 140.
[99] KRISTENSEN A R, GSPONER J, FOSTER L J. A High-Throughput Approach for Measuring Temporal Changes in the Interactome [J]. Nature Methods, 2012, 9(9): 907-909.
[100] MCWHITE C D, PAPOULAS O, DREW K, et al. A Pan-Plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies [J]. Cell, 2020, 181(2): 460-474.
[101] LARANCE M, KIRKWOOD K J, TINTI M, et al. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-Based Protein Correlation Profiling [J]. Molecular and Cellular Proteomics, 2016, 15(7): 2476-2490.
[102] WANG Y, HU Y, HOTI N, et al. Characterization of in Vivo Protein Complexes via Chemical Cross-Linking and Mass Spectrometry [J]. Analytical Chemistry, 2022, 94(3): 1537-1542.
[103] CARLSON M L, STACEY R G, YOUNG J W, et al. Profiling the Escherichia Coli Membrane Protein Interactome Captured in Peptidisc Libraries [J]. Elife, 2019, 8: e46615.
[104] SALAS D, STACEY R G, AKINLAJA M, et al. Next-Generation Interactomics: Considerations for the Use of Co-Elution to Measure Protein Interaction Networks [J]. Molecular and Cellular Proteomics, 2020, 19(1): 1-10.
[105] STACEY R G, SKINNIDER M A, SCOTT N E, et al. A Rapid and Accurate Approach for Prediction of Interactomes from Co-Elution Data (PrInCE) [J]. BMC Bioinformatics, 2017, 18(1): 457.
[106] HU L Z, GOEBELS F, TAN J H, et al. EPIC: Software Toolkit for Elution Profile-Based Inference of Protein Complexes [J]. Nature Methods, 2019, 16(8): 737-742.
[107] FOSSATI A, LI C, ULIANA F, et al. PCprophet: a Framework for Protein Complex Prediction and Differential Analysis Using Proteomic Data [J]. Nature Methods, 2021, 18(5): 520-527.
[108] REES J S, LI X W, PERRETT S, et al. Protein Neighbors and Proximity Proteomics [J]. Molecular and Cellular Proteomics, 2015, 14(11): 2848-2856.
[109] CHAVEZ J D, BRUCE J E. Chemical Cross-Linking with Mass Spectrometry: a Tool for Systems Structural Biology [J]. Current Opinion in Chemical Biology, 2019, 48: 8-18.
[110] GOTZE M, IACOBUCCI C, IHLING C H, et al. A Simple Cross-Linking/Mass Spectrometry Workflow for Studying System-Wide Protein Interactions [J]. Analytical Chemistry, 2019, 91(15): 10236-10244.
[111] TAN C S H, GO K D, BISTEAU X, et al. Thermal Proximity Coaggregation for System-Wide Profiling of Protein Complex Dynamics in Cells [J]. Science, 2018, 359(6380): 1170-1177.
[112] ZHENG J, CHEN X, YANG Y, et al. Mass Spectrometry-Based Protein Complex Profiling in Time and Space [J]. Analytical Chemistry, 2020, 93(1): 598-619.
[113] FREI A P, JEON O Y, KILCHER S, et al. Direct Identification of Ligand-Receptor Interactions on Living Cells and Tissues [J]. Nature Biotechnology, 2012, 30(10): 997-1001.
[114] SLAVOFF S A, SAGHATELIAN A. Discovering Ligand-Receptor Interactions [J]. Nature Biotechnology, 2012, 30(10): 959-961.
[115] TREMBLAY T L, HILL J J. Biotin-Transfer from a Trifunctional Crosslinker for Identification of Cell Surface Receptors of Soluble Protein Ligands [J]. Scientific Reports, 2017, 7: 46574.
[116] SOBOTZKI N, SCHAFROTH M A, RUDNICKA A, et al. HATRIC-Based Identification of Receptors for Orphan Ligands [J]. Nature Communications, 2018, 9(1): 1519.
[117] HALLORAN M W, LUMB J P. Recent Applications of Diazirines in Chemical Proteomics [J]. Chemistry, 2019, 25(19): 4885-4898.
[118] MUSKENS F M, WARD R J, HERKT D, et al. Design, Synthesis, and Evaluation of a Diazirine Photoaffinity Probe for Ligand-Based Receptor Capture Targeting G Protein-Coupled Receptors [J]. Molecular Pharmacology, 2019, 95(2): 196-209.
[119] ZHANG Y, KAO D S, GU B, et al. Tracking Pathogen Infections by Time-Resolved Chemical Proteomics [J]. Angewandte Chemie International Edition, 2020, 59(6): 2235-2240.
[120] SRIVASTAVA M, ZHANG Y, CHEN J, et al. Chemical Proteomics Tracks Virus Entry and Uncovers NCAM1 as Zika Virus Receptor [J]. Nature Communications, 2020, 11(1): 3896.
[121] CHU B, HE A, TIAN Y, et al. Photoaffinity-Engineered Protein Scaffold for Systematically Exploring Native Phosphotyrosine Signaling Complexes in Tumor Samples [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(38): E8863-E8872.
[122] LEMMON M A, SCHLESSINGER J. Cell Signaling by Receptor Tyrosine Kinases [J]. Cell, 2010, 141(7): 1117-1134.
[123] DU Z, LOVLY C M. Mechanisms of Receptor Tyrosine Kinase Activation in Cancer [J]. Molecular Cancer, 2018, 17(1): 58.
[124] MARGIOTTA A. All Good Things Must End: Termination of Receptor Tyrosine Kinase Signal [J]. International Journal of Molecular Sciences, 2021, 22(12): 6342.
[125] SORKIN A, GOH L K. Endocytosis and Intracellular Trafficking of ErbBs [J]. Experimental Cell Research, 2009, 315(4): 683-696.
[126] ZASTROW M, SORKIN A. Signaling on the Endocytic Pathway [J]. Current Opinion in Cell Biology, 2007, 19(4): 436-445.
[127] WHEELER D L, DUNN E F, HARARI P M. Understanding Resistance to EGFR Inhibitors-Impact on Future Treatment Strategies [J]. Nature Reviews Clinical Oncology, 2010, 7(9): 493-507.
[128] WANG Z, LONGO P A, TARRANT M K, et al. Mechanistic Insights into the Activation of Oncogenic Forms of EGF Receptor [J]. Nature Structure and Molecular Biology, 2011, 18(12): 1388-1393.
[129] DRILON A, CLARK J W, WEISS J, et al. Antitumor Activity of Crizotinib in Lung Cancers Harboring a MET Exon 14 Alteration [J]. Nature Medicine, 2020, 26(1): 47-51.
[130] BRENNAN C W, VERHAAK R G, MCKENNA A, et al. The Somatic Genomic Landscape of Glioblastoma [J]. Cell, 2013, 155(2): 462-477.
[131] SHOLL L M, YEAP B Y, IAFRATE A J, et al. Lung Adenocarcinoma with EGFR Amplification Has Distinct Clinicopathologic and Molecular Features in Never-Smokers [J]. Cancer Research, 2009, 69(21): 8341-8348.
[132] COMOGLIO P M, TRUSOLINO L, BOCCACCIO C. Known and Novel Roles of the MET Oncogene in Cancer: a Coherent Approach to Targeted Therapy [J]. Nature Reviews Cancer, 2018, 18(6): 341-358.
[133] FLAVAHAN W A, DRIER Y, LIAU B B, et al. Insulator Dysfunction and Oncogene Activation in IDH Mutant Gliomas [J]. Nature, 2016, 529(7584): 110-114.
[134] KATOH M. Fibroblast Growth Factor Receptors as Treatment Targets in Clinical Oncology [J]. Nature Reviews Clinical Oncology, 2019, 16(2): 105-122.
[135] OH D Y, BANG Y J. HER2-Targeted Therapies - a Role beyond Breast Cancer [J]. Nature Reviews Clinical Oncology, 2020, 17(1): 33-48.
[136] INTERNATIONAL CANCER GENOME CONSORTIUM PEDBRAIN TUMOR PROJECT. Recurrent MET Fusion Genes Represent a Drug Target in Pediatric Glioblastoma [J]. Nature Medicine, 2016, 22(11): 1314-1320.
[137] SODA M, CHOI Y L, ENOMOTO M, et al. Identification of the Transforming EML4-ALK Fusion Gene in Non-Small-Cell Lung Cancer [J]. Nature, 2007, 448(7153): 561-566.
[138] KENTSIS A, REED C, RICE K L, et al. Autocrine Activation of the MET Receptor Tyrosine Kinase in Acute Myeloid Leukemia [J]. Nature Medicine, 2012, 18(7): 1118-1122.
[139] BHULLAR K S, LAGARON N O, MCGOWAN E M, et al. Kinase-Targeted Cancer Therapies: Progress, Challenges and Future Directions [J]. Molecular Cancer, 2018, 17(1): 48.
[140] BOURNEZ C, CARLES F, PEYRAT G, et al. Comparative Assessment of Protein Kinase Inhibitors in Public Databases and in PKIDB [J]. Molecules, 2020, 25(14): 3226.
[141] COHEN P, CROSS D, JANNE P A. Kinase Drug Discovery 20 Years after Imatinib: Progress and Future Directions [J]. Nature Reviews Drug Discovery, 2021, 20(7): 551-569.
[142] RIELY G J, NEAL J W, CAMIDGE D R, et al. Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial [J]. Cancer Discovery, 2021, 11(7): 1688-1699.
[143] LIANG H, WANG M. MET Oncogene in Non-Small Cell Lung Cancer: Mechanism of MET Dysregulation and Agents Targeting the HGF/c-Met Axis [J]. Onco Targets and Therapy, 2020, 13: 2491-2510.
[144] WOOD G E, HOCKINGS H, HILTON D M, et al. The Role of MET in Chemotherapy Resistance [J]. Oncogene, 2021, 40(11): 1927-1941.
[145] FUJINO T, KOBAYASHI Y, SUDA K, et al. Sensitivity and Resistance of MET Exon 14 Mutations in Lung Cancer to Eight MET Tyrosine Kinase Inhibitors In Vitro [J]. Journal of Thoracic Oncology, 2019, 14(10): 1753-1765.
[146] GUO R, LUO J, CHANG J, et al. MET-Dependent Solid Tumours - Molecular Diagnosis and Targeted Therapy [J]. Nature Reviews Clinical Oncology, 2020, 17(9): 569-587.
[147] ROSKOSKI R. Classification of Small Molecule Protein Kinase Inhibitors Based upon the Structures of Their Drug-Enzyme Complexes [J]. Pharmacological Research, 2016, 103: 26-48.
[148] NIEDERST M J, ENGELMAN J A. Bypass Mechanisms of Resistance to Receptor Tyrosine Kinase Inhibition in Lung Cancer [J]. Science Signaling, 2013, 6(294): re6.
[149] VASILESCU J, SMITH J C, ETHIER M, et al. Proteomic Analysis of Ubiquitinated Proteins from Human MCF-7 Breast Cancer Cells by Immunoaffinity Purification and Mass Spectrometry [J]. Journal of Proteome Research, 2005, 4(6): 2192-2200.
[150] BOISVERT F M, COTE J, BOULANGER M C, et al. A Proteomic Analysis of Arginine-Methylated Protein Complexes [J]. Molecular and Cellular Proteomics, 2003, 2(12): 1319-1330.
[151] LI X, FOLEY E A, MOLLOY K R, et al. Quantitative Chemical Proteomics Approach to Identify Post-Translational Modification-Mediated Protein-Protein Interactions [J]. Journal of the American Chemical Society, 2012, 134(4): 1982-1985.
[152] LI X, FOLEY E A, KAWASHIMA S A, et al. Examining Post-Translational Modification-Mediated Protein-Protein Interactions Using a Chemical Proteomics Approach [J]. Protein Science, 2013, 22(3): 287-295.
[153] LIN J, BAO X, LI X D. A Tri-Functional Amino Acid Enables Mapping of Binding Sites for Posttranslational-Modification-Mediated Protein-Protein Interactions [J]. Molecular Cell, 2021, 81(12): 2669-2681.
[154] SUDHAMALLA B, DEY D, BRESKI M, et al. Site-Specific Azide-Acetyllysine Photochemistry on Epigenetic Readers for Interactome Profiling [J]. Chemical Science, 2017, 8(6): 4250-4256.
[155] KLEINER R E, HANG L E, MOLLOY K R, et al. A Chemical Proteomics Approach to Reveal Direct Protein-Protein Interactions in Living Cells [J]. Cell Chemical Biology, 2018, 25(1): 110-120.
[156] TANG H, DAI Z, QIN X, et al. Proteomic Identification of Protein Tyrosine Phosphatase and Substrate Interactions in Living Mammalian Cells by Genetic Encoding of Irreversible Enzyme Inhibitors [J]. Journal of the American Chemical Society, 2018, 140(41): 13253-13259.
[157] XIE X, LI X M, QIN F, et al. Genetically Encoded Photoaffinity Histone Marks [J]. Journal of the American Chemical Society, 2017, 139(19): 6522-6525.
[158] WANG J, LIU Y, LIU Y, et al. Time-Resolved Protein Activation by Proximal Decaging in Living Systems [J]. Nature, 2019, 569(7757): 509-513.
[159] WAGNER M J, STACEY M M, LIU B A, et al. Molecular Mechanisms of SH2- and PTB-Domain-Containing Proteins in Receptor Tyrosine Kinase Signaling [J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(12): a008987.
[160] SEET B T, DIKIC I, ZHOU M M, et al. Reading Protein Modifications with Interaction Domains [J]. Nature Reviews Molecular Cell Biology, 2006, 7(7): 473-483.
[161] ZHENG Z, CHU B, KONG Q, et al. High-Throughput Phosphotyrosine Protein Complexes Screening by Photoaffinity-Engineered Protein Scaffold-Based Forward-Phase Protein Array [J]. Analytical Chemistry, 2019, 91(15): 10026-10032.
[162] KONG Q, HUANG P, CHU B, et al. High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes [J]. Analytical Chemistry, 2020, 92(13): 8933-8942.
[163] MOORE K E, CARLSON S M, CAMP N D, et al. A General Molecular Affinity Strategy for Global Detection and Proteomic Analysis of Lysine Methylation [J]. Molecular Cell, 2013, 50(3): 444-456.
[164] LIU H, GALKA M, MORI E, et al. A Method for Systematic Mapping of Protein Lysine Methylation Identifies Functions for HP1beta in DNA Damage Response [J]. Molecular Cell, 2013, 50(5): 723-735.
[165] GAO Y, LI Y, ZHANG C, et al. Enhanced Purification of Ubiquitinated Proteins by Engineered Tandem Hybrid Ubiquitin-Binding Domains (ThUBDs) [J]. Molecular and Cellular Proteomics, 2016, 15(4): 1381-1396.
[166] ZHAN Y, SONG X, ZHOU G W. Structural Analysis of Regulatory Protein Domains Using GST-Fusion Proteins [J]. Gene, 2001, 281(1): 1-9.
[167] SCHAFER F, SEIP N, MAERTENS B, et al. Purification of GST-Tagged Proteins [J]. Methods in Enzymology, 2015, 559: 127-139.
[168] SMITH D B, JOHNSON K S. Single-Step Purification of Polypeptides Expressed in Escherichia Coli as Fusions with Glutathione S-Transferase [J]. Gene, 1988, 67(1): 31-40.
[169] BELL M R, ENGLEKA M J, MALIK A, et al. To Fuse or Not to Fuse: What Is Your Purpose? [J]. Protein Science, 2013, 22(11): 1466-1477.
[170] KE M, YUAN X, HE A, et al. Spatiotemporal Profiling of Cytosolic Signaling Complexes in Living Cells by Selective Proximity Proteomics [J]. Nature Communications, 2021, 12(1): 71.
[171] WANG S, ZHANG C, LI M, et al. A System-Wide Spatiotemporal Characterization of ErbB Receptor Complexes by Subcellular Fractionation Integrated Quantitative Mass Spectrometry [J]. Analytical Chemistry, 2021, 93(22): 7933-7941.
[172] KANEKO T, HUANG H, CAO X, et al. Superbinder SH2 Domains Act as Antagonists of Cell Signaling [J]. Science Signaling, 2012, 5(243): ra68.
[173] FRESE S, SCHUBERT W D, FINDEIS A C, et al. The Phosphotyrosine Peptide Binding Specificity of Nck1 and Nck2 Src Homology 2 Domains [J]. Journal of Biological Chemistry, 2006, 281(26): 18236-18245.
[174] BROWN M C, CARY L A, JAMIESON J S, et al. Src and FAK Kinases Cooperate to Phosphorylate Paxillin Kinase Linker, Stimulate Its Focal Adhesion Localization, and Regulate Cell Spreading and Protrusiveness [J]. Molecular Biology of the Cell, 2005, 16(9): 4316-4328.
[175] JACQUET K, BANERJEE S L, CHARTIER F J M, et al. Proteomic Analysis of NCK1/2 Adaptors Uncovers Paralog-Specific Interactions That Reveal a New Role for NCK2 in Cell Abscission During Cytokinesis [J]. Molecular and Cellular Proteomics, 2018, 17(10): 1979-1990.
[176] BREHME M, HANTSCHEL O, COLINGE J, et al. Charting the Molecular Network of the Drug Target Bcr-Abl [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7414-7419.
[177] LIU B A, ENGELMANN B W, JABLONOWSKI K, et al. SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF Receptor Mediated Signaling Networks Reveal an Extensive Potential Interactome [J]. Cell Communication and Signaling, 2012, 10(1): 27.
[178] YANG G, LI Q, REN S, et al. Proteomic, Functional and Motif-Based Analysis of C-Terminal Src Kinase-Interacting Proteins [J]. Proteomics, 2009, 9(21): 4944-4961.
[179] AMANCHY R, ZHONG J, HONG R, et al. Identification of c-Src Tyrosine Kinase Substrates in Platelet-Derived Growth Factor Receptor Signaling [J]. Molecular Oncology, 2009, 3(5): 439-450.
[180] KENNEDY S A, JARBOUI M A, SRIHARI S, et al. Extensive Rewiring of the EGFR Network in Colorectal Cancer Cells Expressing Transforming Levels of KRAS(G13D) [J]. Nature Communications, 2020, 11(1): 499.
[181] HARTEL N G, CHEW B, QIN J, et al. Deep Protein Methylation Profiling by Combined Chemical and Immunoaffinity Approaches Reveals Novel PRMT1 Targets [J]. Molecular and Cellular Proteomics, 2019, 18(11): 2149-2164.
[182] SECZYNSKA M, BLOOR S, CUESTA S M, et al. Genome Surveillance by HUSH-Mediated Silencing of Intronless Mobile Elements [J]. Nature, 2022, 601(7893): 440-445.
[183] CHANG Y, SUN L, KOKURA K, et al. MPP8 Mediates the Interactions between DNA Methyltransferase Dnmt3a and H3K9 Methyltransferase GLP/G9a [J]. Nature Communications, 2011, 2: 533.
[184] BULUT-KARSLIOGLU A, JIN H, KIM Y K, et al. Chd1 Protects Genome Integrity at Promoters to Sustain Hypertranscription in Embryonic Stem Cells [J]. Nature Communications, 2021, 12(1): 4859.
[185] MANNI W, JIANXIN X, WEIQI H, et al. JMJD Family Proteins in Cancer and Inflammation [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 304.
[186] MAY M R, BETTRIDGE J T, DESIDERIO S. Binding and Allosteric Transmission of Histone H3 Lys-4 Trimethylation to the Recombinase RAG-1 Are Separable Functions of the RAG-2 Plant Homeodomain Finger [J]. Journal of Biological Chemistry, 2020, 295(27): 9052-9060.
[187] ARORA S, HORNE W S, ISLAM K. Engineering Methyllysine Writers and Readers for Allele-Specific Regulation of Protein-Protein Interactions [J]. Journal of the American Chemical Society, 2019, 141(39): 15466-15470.
[188] GSELL C, RICHLY H, COIN F, et al. A Chromatin Scaffold for DNA Damage Recognition: How Histone Methyltransferases Prime Nucleosomes for Repair of Ultraviolet Light-Induced Lesions [J]. Nucleic Acids Research, 2020, 48(4): 1652-1668.
[189] DIX M M, SIMON G M, CRAVATT B F. Global Mapping of the Topography and Magnitude of Proteolytic Events in Apoptosis [J]. Cell, 2008, 134(4): 679-691.
[190] YANG Y Y, GRAMMEL M, RAGHAVAN A S, et al. Comparative Analysis of Cleavable Azobenzene-Based Affinity Tags for Bioorthogonal Chemical Proteomics [J]. Chemical and Biology, 2010, 17(11): 1212-1222.
[191] VERHELST S H, FONOVIC M, BOGYO M. A Mild Chemically Cleavable Linker System for Functional Proteomic Applications [J]. Angewandte Chemie International Edition, 2007, 46(8): 1284-1286.
[192] WILLIAMS C C, ALLISON J G, VIDAL G A, et al. The ERBB4/HER4 Receptor Tyrosine Kinase Regulates Gene Expression by Functioning as a STAT5A Nuclear Chaperone [J]. Journal of Cell Biology, 2004, 167(3): 469-478.
[193] DOU H, BUETOW L, HOCK A, et al. Structural Basis for Autoinhibition and Phosphorylation-Dependent Activation of c-Cbl [J]. Nature Structure and Molecular Biology, 2012, 19(2): 184-192.
[194] ZHOU M M, RAVICHANDRAN K S, OLEJNICZAK E F, et al. Structure and Ligand Recognition of the Phosphotyrosine Binding Domain of Shc [J]. Nature, 1995, 378(6557): 584-592.
[195] PETSCHNIGG J, GROISMAN B, KOTLYAR M, et al. The Mammalian-Membrane Two-Hybrid Assay (MaMTH) for Probing Membrane-Protein Interactions in Human Cells [J]. Nature Methods, 2014, 11(5): 585-592.
[196] SARAON P, SNIDER J, KALAIDZIDIS Y, et al. A Drug Discovery Platform to Identify Compounds That Inhibit EGFR Triple Mutants [J]. Nature Chemical Biology, 2020, 16(5): 577-586.
[197] LANDI L, MINUTI G, D'INCECCO A, et al. Targeting c-MET in the Battle Against Advanced Nonsmall-Cell Lung Cancer [J]. Current Opinion in Oncology, 2013, 25(2): 130-136.
[198] ORGAN S L, TSAO M S. An Overview of the c-MET Signaling Pathway [J]. Therapeutic Advances in Medical Oncology, 2011, 3(1 Suppl): S7-S19.
[199] ROSKOSKI R, JR. Orally Effective FDA-Approved Protein Kinase Targeted Covalent Inhibitors (TCIs) [J]. Pharmacological Research, 2021, 165: 105422.
[200] ENGELMAN J A, ZEJNULLAHU K, GALE C M, et al. PF00299804, an Irreversible Pan-ERBB Inhibitor, Is Effective in Lung Cancer Models with EGFR and ERBB2 Mutations That Are Resistant to Gefitinib [J]. Cancer Research, 2007, 67(24): 11924-11932.
[201] LI D, AMBROGIO L, SHIMAMURA T, et al. BIBW2992, an Irreversible EGFR/HER2 Inhibitor Highly Effective in Preclinical Lung Cancer Models [J]. Oncogene, 2008, 27(34): 4702-4711.
[202] LI S, COUVILLON A D, BRASHER B B, et al. Tyrosine Phosphorylation of Grb2 by Bcr/Abl and Epidermal Growth Factor Receptor: a Novel Regulatory Mechanism for Tyrosine Kinase Signaling [J]. The EMBO Journal, 2001, 20(23): 6793-6804.
[203] POULIN B, SEKIYA F, RHEE S G. Intramolecular Interaction between Phosphorylated Tyrosine-783 and the C-Terminal Src Homology 2 Domain Activates Phospholipase C-Gamma1 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(12): 4276-4281.
[204] OLSEN J V, BLAGOEV B, GNAD F, et al. Global, in Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks [J]. Cell, 2006, 127(3): 635-648.
[205] CHAN P C, SUDHAKAR J N, LAI C C, et al. Differential Phosphorylation of the Docking Protein Gab1 by c-Src and the Hepatocyte Growth Factor Receptor Regulates Different Aspects of Cell Functions [J]. Oncogene, 2010, 29(5): 698-710.
[206] PFEIFFER A, FRANCIOSA G, LOCARD-PAULET M, et al. Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD-Driven AML [J]. Cancer Research, 2022, 82(11): 2141-2155.
修改评论