中文版 | English
题名

表面纳米化和GelMA修饰对钛合金生物学性能的影响研究

其他题名
SURFACE NANOSTRUCTURING AND GelMA MODIFICATION OF TITANIUM ALLOY FOR ENHANCED BIOLOGICAL PERFORMANCE
姓名
姓名拼音
HUANG Yibo
学号
12132521
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王国成
导师单位
中国科学院深圳理工大学
论文答辩日期
2023-05-15
论文提交日期
2023-07-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

钛及其合金(以下简称“钛合金”)具有优异的力学性能、化学稳定性和良好的生物相容性,已成为临床上骨种植体的主要材料。然而,钛合金是生物惰性材料,不能促进种植体周围的骨再生,且不具备抗菌能力,导致其临床失效率较高。因此,赋予钛合金种植体良好的骨诱导能力,提高种植体与周围骨组织的结合能力(骨整合)并预防细菌感染是种植体长期保持稳定的关键。光热疗法(Photothermal therapy, PTT)和光动力疗法(Photodynamic therapy, PDT)因具有高效杀菌且不产生细菌耐药性等优点,有望实现安全高效地抗菌。然而,目前常用的PTTPDT材料因与基底材料的结合强度不高及光敏剂毒性等问题,很难实现在种植体表面的应用。针对上述问题,本文利用水热技术在钛合金表面原位构建氧化钛纳米结构,通过改变工艺参数来调控纳米结构,从而赋予种植体表面近红外光吸收性能。研究了氧化钛纳米结构和光吸收的关系,纳米结构在近红外辐照下的体外抗菌性能。此外,利用甲基丙烯酸酐化明胶(Methacrylate Gelatin, GelMA)对氧化钛纳米结构进行修饰,利用其表面丰富的官能团吸附抗菌药物羧苄青霉素钠(Carbenicillin disodium, CID)和促骨整合的药物姜黄素(Curcumin, Cur),评价了涂层的体外抗菌性能及促成骨相关细胞增殖等生物学性能。本文的主要研究内容和结论如下:

1、钛合金表面氧化钛纳米结构光吸收性能的调控及生物学性能评价。利用水热技术在钛合金表面原位构建氧化钛纳米结构,通过调控实验参数,实现对纳米结构的调控,考察纳米结构和光吸收的关系。通过紫外-可见光-近红外光吸收光谱筛选出具有近红外光吸收的纳米结构,利用扫描电子显微镜、拉曼光谱仪和水接触角测试仪对纳米结构进行表征。结果表明该纳米结构主要由锐钛矿和金红石相构成,纳米结构的形成改善了钛合金表面润湿性。体外抗菌实验表明,纳米结构在近红外光下(808 nm1.13 W/cm2)照射10 min后对金黄色葡萄球菌具有良好的抗菌能力,同时该纳米结构能够促进MC3T3-E1细胞的增殖,表明该纳米结构具有良好的生物相容性。

2GelMA对钛合金表面纳米结构的修饰及其生物学性能评价。选择具有近红外光吸收的纳米结构(0.18 M HCl180 ℃4 h),在其表面吸附一层GelMA,利用GelMA表面丰富的官能团吸附抗菌药物羧苄青霉素钠以及促成骨功能的药物姜黄素和地塞米松。利用红外光谱和荧光染色等手段证明该纳米结构对GelMA具有较强的吸附能力,扫描电镜结果表明吸附GelMA不会掩盖纳米结构特征。体外抗菌实验表明,吸附羧苄基青霉素钠的纳米结构表面(TiO2/GelMA-CID对金黄色葡萄球菌具有显著的抗菌性能,同时体外细胞实验表明其对MC3T3-E1细胞无显著毒性。此外,吸附姜黄素和地塞米松的GelMA修饰的纳米结构表面对成骨细胞的增殖具有一定影响。此结果说明GelMA修饰的纳米氧化钛表面可为药物装载提供良好的平台。

 
 
其他摘要

 

 
 
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-07
参考文献列表

[1] LEWANDROWSKI K-U, GRESSER J D, WISE D L, et al. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats[J]. Biomaterials, 2000, 21(8): 757–764.
[2] RAPHEL J, KARLSSON J, GALLI S, et al. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants[J]. Biomaterials, 2016, 83: 269–282.
[3] MÄKELÄ K T, MATILAINEN M, PULKKINEN P, et al. Failure rate of cemented and uncemented total hip replacements: register study of combined Nordic database of four nations[J]. Bmj, 2014, 348:1756-1833.
[4] RAPHEL J, HOLODNIY M, GOODMAN S B, et al. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants[J]. Biomaterials, 2016, 84(1): 301-314.
[5] DALURY D F, POMEROY D L, GORAB R S, et al. Why are total knee arthroplasties being revised?[J]. The Journal of arthroplasty, 2013, 28(8): 120–121.
[6] BOZIC K J, KURTZ S M, LAU E, et al. The epidemiology of revision total knee arthroplasty in the United States[J]. Clinical Orthopaedics and Related Research, 2010, 468(1): 45–51.
[7] KILICLI V, YAN X, SALOWITZ N, et al. Recent advancements in self-healing metallic materials and self-healing metal matrix composites[J]. Jom, 2018, 70: 846–854.
[8] PRASAD K, BAZAKA O, CHUA M, et al. Metallic biomaterials: Current challenges and opportunities[J]. Materials, 2017, 10(8): 884.
[9] MITSUO N. Low modulus titanium alloys for inhibiting bone atrophy[J]. Biomaterials Science and Engineering, 2011:249-268.
[10] OLDANI C, DOMINGUEZ A. Titanium as a biomaterial for implants[J]. Recent advances in arthroplasty, 2012, 218: 149–162.
[11] XU S, ZHOU Z, GAO M, et al. Bioadaptive nanorod topography of titanium surface to control cell behaviors and osteogenic differentiation of preosteoblast cells[J]. Journal of Materials Science & Technology, 2016, 32(9): 944–949.
[12] LV L, LIU Y, ZHANG P, et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation[J]. Biomaterials, 2015, 39: 193–205.
[13] COWDEN K, DIAS-NETIPANYJ M F, POPAT K C. Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2019, 17: 380–390.
[14] LI M, CHU X, WANG D, et al. Tuning the surface potential to reprogram immune microenvironment for bone regeneration[J]. Biomaterials, 2022, 282: 121408.
[15] XIN H, CHEN J, LI T, et al. One-step preparation of the engineered titanium implant by rationally designed linear fusion peptides with spacer-dependent antimicrobial, anti-inflammatory and osteogenic activities[J]. Chemical Engineering Journal, 2021, 424: 130380.
[16] SHEN X, ZHANG Y, MA P, et al. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration[J]. Biomaterials, 2019, 212: 1–16.
[17] YANG Y, WU X, HE C, et al. Metal-Organic framework/Ag-based hybrid nanoagents for rapid and synergistic bacterial eradication[J]. ACS applied materials & interfaces, 2020, 12(12): 13698–13708.
[18] MITRA D, KANG E-T, NEOH K G. Antimicrobial copper-based materials and coatings: potential multifaceted biomedical applications[J]. ACS applied materials & interfaces, 2019, 12(19): 21159–21182.
[19] RAJENDRAN A, VINOTH G, NIVEDHITHA J, et al. Ca-Ag coexisting nano-structured titania layer on Ti metal surface with enhanced bioactivity, antibacterial and cell compatibility[J]. Materials Science and Engineering: C, 2019, 99: 440–449.
[20] CHEN Y, ZHANG X, WANG L, et al. Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: adsorption combined with photocatalysis[J]. Chemical Engineering Journal, 2020, 402: 126260.
[21] GEISINGER E, MORTMAN N J, DAI Y, et al. Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope[J]. Nature Communications, 2020, 11(1): 4522.
[22] GERITS E, KUCHARÍKOVÁ S, VAN DIJCK P, et al. Antibacterial activity of a new broad‐spectrum antibiotic covalently bound to titanium surfaces[J]. Journal of Orthopaedic Research, 2016, 34(12): 2191–2198.
[23] YANG Z, XI Y, BAI J, et al. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo[J]. Biomaterials, 2021, 269: 120534.
[24] CHENG L, CAI Z, YE T, et al. Injectable polypeptide‐protein hydrogels for promoting infected wound healing[J]. Advanced Functional Materials, 2020, 30(25): 1–12.
[25] HUANG T, HOLDEN J A, REYNOLDS E C, et al. Multifunctional antimicrobial polypeptide-selenium nanoparticles combat drug-resistant bacteria[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55696–55709.
[26] ZHANG L, XUE Y, GOPALAKRISHNAN S, et al. Antimicrobial peptide-loaded pectolite nanorods for enhancing wound-healing and biocidal activity of titanium[J]. ACS applied materials & interfaces, 2021, 13(24): 28764–28773.
[27] SI Z, HOU Z, VIKHE Y S, et al. Antimicrobial effect of a novel chitosan derivative and its synergistic effect with antibiotics[J]. ACS applied materials & interfaces, 2021, 13(2): 3237–3245.
[28] MITRA D, KANG E-T, NEOH K G. Polymer-based coatings with integrated antifouling and bactericidal properties for targeted biomedical applications[J]. ACS Applied Polymer Materials, 2021, 3(5): 2233–2263.
[29] PENG H, ZHANG W, HUNG W, et al. Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness[J]. Advanced Materials, 2020, 32(23): 2001383.
[30] CHENG S, QI M, LI W, et al. Dual‐responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria‐infected wound healing[J]. Advanced Healthcare Materials, 2022,12(6): 2202652.
[31] DONG Z, YUAN Q, HUANG K, et al. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration[J]. RSC advances, 2019, 9(31): 17737–17744.
[32] KURIAN A G, SINGH R K, PATEL K D, et al. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics[J]. Bioactive Materials, 2022, 8: 267–295.
[33] YUE K, TRUJILLO-DE SANTIAGO G, ALVAREZ M M, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73: 254–271.
[34] LUO Z, SUN W, FANG J, et al. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery[J]. Advanced healthcare materials, 2019, 8(3): 1801054.
[35] YING G, JIANG N, YU C, et al. Three-dimensional bioprinting of gelatin methacryloyl (GelMA)[J]. Bio-Design and Manufacturing, 2018, 1(4): 215–224.
[36] RIZWAN M, PEH G S, ANG H-P, et al. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications[J]. Biomaterials, 2017, 120: 139–154.
[37] ADIB A A, SHEIKHI A, SHAHHOSSEINI M, et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering[J]. Biofabrication, 2020, 12(4): 045006.
[38] GONG T, XIE J, LIAO J, et al. Nanomaterials and bone regeneration. Bone Res, 2015, 3(1):1-7.
[39] DATTOLA E, PARROTTA E I, SCALISE S, et al. Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications[J]. RSC advances, 2019, 9(8): 4246–4257.
[40] DADGAR N, GHIASEDDIN A, IRANI S, et al. Cartilage tissue engineering using injectable functionalized demineralized bone matrix scaffold with glucosamine in PVA carrier, cultured in microbioreactor prior to study in rabbit model[J]. Materials Science and Engineering: C, 2021, 120: 111677.
[41] EL-HABASHY S E, ELTAHER H M, GABALLAH A, et al. Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis[J]. Materials Science and Engineering C, 2021, 119: 111599.
[42] YE D, TANG W, XU Z, et al. Application of MBG as a coating material on mechanically stronger but less degradable ceramic scaffolds for enhanced osteogenesis[J]. Materials Letters, 2018, 223: 105–108.
[43] VALLET-REGI M, SALINAS A J. Mesoporous bioactive glasses for regenerative medicine[J]. Materials Today Bio, 2021, 11: 100121.
[44] MARTINA M, HUTMACHER D W. Biodegradable polymers applied in tissue engineering research: a review[J]. Polymer International, 2007, 56(2): 145–157.
[45] CIVJAN S, HUGET E F, DESIMON L B. Potential applications of certain nickel-titanium (nitinol) alloys[J]. Journal of dental research, 1975, 54(1): 89–96.
[46] ELIAS C, LIMA J, VALIEV R, et al. Biomedical applications of titanium and its alloys[J]. Jom, 2008, 60: 46–49.
[47] NARUSHIMA T, UEDA K. Co-Cr alloys as effective metallic biomaterials[J]. Advances in Metallic Biomaterials: Tissues, 2015: 157–178.
[48] 郑玉峰, 吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297
[49] AGARWAL R, AJ GARCÍA. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair[J]. Advanced Drug Delivery Reviews, 2015, 94: 53–62.
[50] 李珊, 刘超, 晏怡果. 医用金属材料在骨科应用中的生物功能化[J]. 中国组织工程研究, 2021, 25(34): 5523-5529.
[51] HENCH L L, POLAK J M. Third-generation biomedical materials[J]. Science, 2002, 295(5557): 1014–1017.
[52] BRINKMANN J, HEFTI T, SCHLOTTIG F, et al. Response of osteoclasts to titanium surfaces with increasing surface roughness: an in vitro study[J]. Biointerphases, American Vacuum Society, 2012, 7(1): 34.
[53] RAMAZANOGLU M, OSHIDA Y. Osseointegration and bioscience of implant surfaces-current concepts at bone-implant interface[J]. Implant Dentistry-A Rapidly Evolving Practice, 2011(978–953): 307–658.
[54] GENCHI G G, CAO Y, DESAI T A. TiO2 nanotube arrays as smart platforms for biomedical applications[A]. Smart Nanoparticles for Biomedicine[M]. 2018: 143–157.
[55] MARINO C E, DE OLIVEIRA E M, ROCHA-FILHO R C, et al. On the stability of thin-anodic-oxide films of titanium in acid phosphoric media[J]. Corrosion Science, 2001, 43(8): 1465–1476.
[56] SAHA S, KUMAR R, PRAMANIK K, et al. Interaction of osteoblast-TiO2 nanotubes in vitro: the combinatorial effect of surface topography and other physico-chemical factors governs the cell fate[J]. Applied Surface Science, 2018, 449: 152–165.
[57] SASIKUMAR Y, INDIRA K, RAJENDRAN N. Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: a review[J]. Journal of Bio-and Tribo-Corrosion, 2019, 5(2): 1–25.
[58] WU H, XIE L, HE M, et al. A wear-resistant TiO2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues[J]. Acta biomaterialia, 2019, 97: 597–607.
[59] SILVERWOOD R K, FAIRHURST P G, SJÖSTRÖM T, et al. Analysis of osteoclastogenesis/osteoblastogenesis on nanotopographical titania surfaces[J]. Advanced healthcare materials, 2016, 5(8): 947–955.
[60] QIU J, LI J, WANG S, et al. TiO2 nanorod array constructed nanotopography for regulation of mesenchymal stem cells fate and the realization of location‐committed stem cell differentiation[J]. Small, 2016, 12(13): 1770–1778.
[61] GREER A I, GORIAINOV V, KANCZLER J, et al. Nanopatterned titanium implants accelerate bone formation in vivo[J]. ACS applied materials & interfaces, 2020, 12(30): 33541–33549.
[62] CHEN L, BAI M, DU R, et al. The non-viral vectors and main methods of loading siRNA onto the titanium implants and their application[J]. Journal of Biomaterials Science, 2020, 31(16): 2152–2168.
[63] MARISCAL-MUÑOZ E, COSTA C A, TAVARES H S, et al. Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb: YAG laser irradiation[J]. Clinical oral investigations, 2016, 20(3): 503–511.
[64] CHEN P, MIYAKE M, TSUKAMOTO M, et al. Response of preosteoblasts to titanium with periodic micro/nanometer scale grooves produced by femtosecond laser irradiation[J]. Journal of Biomedical Materials Research Part A, 2017, 105(12): 3456–3464.
[65] HUANG Y-Z, HE S-K, GUO Z-J, et al. Nanostructured titanium surfaces fabricated by hydrothermal method: influence of alkali conditions on the osteogenic performance of implants[J]. Materials Science and Engineering: C, 2019, 94: 1–10.
[66] HE F, LI J, WANG Y, et al. Design of cefotaxime sodium-loaded polydopamine coatings with controlled surface roughness for titanium implants[J]. ACS Biomaterials Science & Engineering, 2022, 8(11): 4751–4763.
[67] 孙振, 王东. 种植体表面改性的现状和发展[J]. 现代口腔医学杂志, 2010, 24(2): 152–153.
[68] 唐霞, 王少安. 种植体的表面改性与促进成骨[J]. 国际口腔医学杂志, 2008, 35: 225-228.
[69] BILEM I, CHEVALLIER P, PLAWINSKI L, et al. RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells[J]. Acta biomaterialia, 2016, 36: 132–142.
[70] MOORE N M, LIN N J, GALLANT N D, et al. Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients[J]. Acta biomaterialia, 2011, 7(5): 2091–2100.
[71] SVERZUT A T, CRIPPA G E, MORRA M, et al. Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses[J]. Biomedical materials, 2012, 7(3): 035007.
[72] STADLINGER B, PILLING E, HUHLE M, et al. Suitability of differently designed matrix‐based implant surface coatings: An animal study on bone formation[J]. Journal of Biomedical Materials Research Part B, 2008, 87(2): 516–524.
[73] WU J, LIU Y, CAO Q, et al. Growth factors enhanced angiogenesis and osteogenesis on polydopamine coated titanium surface for bone regeneration[J]. Materials & Design, 2020, 196: 109162.
[74] CHEN J, CHEN J, ZHU Z, et al. Drug-loaded and anisotropic wood-derived hydrogel periosteum with super antibacterial, anti-inflammatory, and osteogenic activities[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 50485–50498.
[75] SUN H, ZHANG C, ZHANG B, et al. 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration[J]. Chemical Engineering Journal, 2022, 427: 130961.
[76] OGSTON N, HARRISON A, CHEUNG H, et al. Dexamethasone and retinoic acid differentially regulate growth and differentiation in an immortalised human clonal bone marrow stromal cell line with osteoblastic characteristics[J]. Steroids, 2002, 67(11): 895–906.
[77] CHOI L Y, KIM M H, YANG W M. Promotion of osteogenesis by sweroside via BMP 2‐involved signaling in postmenopausal osteoporosis[J]. Phytotherapy Research, 2021, 35(12): 7050–7063.
[78] SAMIEI M, ABEDI A, SHARIFI S, et al. Early osteogenic differentiation stimulation of dental pulp stem cells by calcitriol and curcumin[J]. Stem Cells International, 2021, 2021.
[79] ABAZARI M F, ZARE KARIZI S, HAJATI BIRGANI N, et al. Curcumin‐loaded PHB/PLLA nanofibrous scaffold supports osteogenesis in adipose‐derived stem cells in vitro[J]. Polymers for Advanced Technologies, 2021, 32(9): 3563–3571.
[80] JAIN S, MEKA S R K, CHATTERJEE K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering[J]. Biomedical Materials, 2016, 11(5): 055007.
[81] MARCULESCU C E, MABRY T, BERBARI E F. Prevention of surgical site infections in joint replacement surgery[J]. Surgical infections, 2016, 17(2): 152–157.
[82] LEE C-T, HUANG Y-W, ZHU L, et al. Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis[J]. Journal of dentistry, 2017, 62: 1–12.
[83] TANDE A J, PATEL R. Prosthetic joint infection[J]. Clinical microbiology reviews, 2014, 27(2): 302–345.
[84] CHOUIRFA H, BOULOUSSA H, MIGONNEY V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications[J]. Acta biomaterialia, 2019, 83: 37–54.
[85] WANG M, TANG T. Surface treatment strategies to combat implant-related infection from the beginning[J]. Journal of orthopaedic translation, 2019, 17: 42–54.
[86] LUAN Y, LIU S, PIHL M, et al. Bacterial interactions with nanostructured surfaces[J]. Current opinion in colloid & interface science, 2018, 38: 170–189.
[87] FERRARIS S, VENTURELLO A, MIOLA M, et al. Antibacterial and bioactive nanostructured titanium surfaces for bone integration[J]. Applied Surface Science, 2014, 311: 279–291.
[88] JAGGESSAR A, SHAHALI H, MATHEW A, et al. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants[J]. Journal of nanobiotechnology, 2017, 15(1): 1–20.
[89] MEDINA-CRUZ D, GONZÁLEZ M U, TIEN-STREET W, et al. Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2019, 17: 36–46.
[90] ZHANG X, ZHANG G, CHAI M, et al. Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO2 nanorod arrays for safe biofilm eradication on implant[J]. Bioactive materials, 2021, 6(1): 12–25.
[91] ERCAN B, TAYLOR E, ALPASLAN E, et al. Diameter of titanium nanotubes influences anti-bacterial efficacy[J]. Nanotechnology, 2011, 22(29): 295102.
[92] DING X, DUAN S, DING X, et al. Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens[J]. Advanced Functional Materials, 2018, 28(40): 1802140.
[93] ZHU Y, XU C, ZHANG N, et al. Polycationic synergistic antibacterial agents with multiple functional components for efficient anti‐infective therapy[J]. Advanced Functional Materials, 2018, 28(14): 1706709.
[94] VERLEE A, MINCKE S, STEVENS C V. Recent developments in antibacterial and antifungal chitosan and its derivatives[J]. Carbohydrate polymers, 2017, 164: 268–283.
[95] ZHANG F, HU Q, WEI Y, et al. Surface modification of titanium implants by pH-responsive coating designed for self-adaptive antibacterial and promoted osseointegration[J]. Chemical Engineering Journal, 2022, 435: 134802.
[96] WANG L, HE H, YANG X, et al. Bimetallic ions regulated PEEK of bone implantation for antibacterial and osteogenic activities[J]. Materials Today Advances, 2021, 12: 100162.
[97] HU X, NEOH K G, SHI Z, et al. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion[J]. Biomaterials, 2010, 31(34): 8854–8863.
[98] XIA C, MA X, ZHANG X, et al. Enhanced physicochemical and biological properties of C/Cu dual ions implanted medical titanium[J]. Bioactive materials, 2020, 5(2): 377–386.
[99] CAMPOCCIA D, MONTANARO L, ARCIOLA C R. A review of the biomaterials technologies for infection-resistant surfaces[J]. Biomaterials, 2013, 34(34): 8533–8554.
[100] WANG L, YANG X, CAO W, et al. Mussel-inspired deposition of copper on titanium for bacterial inhibition and enhanced osseointegration in a periprosthetic infection model[J]. Rsc Advances, Royal Society of Chemistry, 2017, 7(81): 51593–51604.
[101] 夏金兰, 王春, 刘新星. 抗菌剂及其抗菌机理[J]. 中南大学学报: 自然科学版, 2004, 35(1): 31-38.
[102] JIA Z, XIU P, LI M, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses[J]. Biomaterials, 2016, 75: 203–222.
[103] SHEN X, HU Y, XU G, et al. Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16426–16440.
[104] ZHANG L, GUO J, HUANG X, et al. The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants[J]. Journal of Materials Chemistry B, 2016, 4(21): 3788–3800.
[105] CHENG H, YUE K, KAZEMZADEH-NARBAT M, et al. Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis[J]. ACS applied materials & interfaces, 2017, 9(13): 11428–11439.
[106] HE Y, ZHANG Y, SHEN X, et al. The fabrication and in vitro properties of antibacterial polydopamine-LL-37-POPC coatings on micro-arc oxidized titanium[J]. Colloids and Surfaces B: Biointerfaces, 2018, 170: 54–63.
[107] LI K, CHEN J, XUE Y, et al. Polymer brush grafted antimicrobial peptide on hydroxyapatite nanorods for highly effective antibacterial performance[J]. Chemical Engineering Journal, 2021, 423: 130133.
[108] TIAN X, SUN F, ZHOU X, et al. Role of peptide self‐assembly in antimicrobial peptides[J]. Journal of Peptide Science, 2015, 21(7): 530–539.
[109] CHEN X, HIRT H, LI Y, et al. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms[J]. PLoS One, 2014, 9(11): e111579.
[110] KUZMIN D, EMELIANOVA A, KALASHNIKOVA M, et al. Effect of N-and C-terminal modifications on cytotoxic properties of antimicrobial peptide tachyplesin[J]. Bulletin of experimental biology and medicine, 2017, 162(6): 754–757.
[111] ZHOU L, LAI Y, HUANG W, et al. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility[J]. Colloids and Surfaces B: Biointerfaces, 2015, 128: 552–560.
[112] PITT W G, MCBRIDE M O, LUNCEFORD J K, et al. Ultrasonic enhancement of antibiotic action on gram-negative bacteria[J]. Antimicrobial agents and chemotherapy, 1994, 38(11): 2577–2582.
[113] GHUYSEN J-M. Serine β-lactamases and penicillin-binding proteins[J]. Annual review of microbiology, 1991, 45(1): 37–67.
[114] CHOPRA I, ROBERTS M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and molecular biology reviews, 2001, 65(2): 232–260.
[115] HE Y, HUANG Y-Y, XI L, et al. Tetracyclines function as dual-action light-activated antibiotics[J]. PloS one, 2018, 13(5): e0196485.
[116] ZARGHAMI V, GHORBANI M, BAGHERI K P, et al. Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline[J]. Journal of Materials Science: Materials in Medicine, 2022, 33(6): 1–12.
[117] KHAWCHAROENPORN T, APISARNTHANARAK A, MUNDY L M. National survey of antimicrobial stewardship programs in Thailand[J]. American journal of infection control, 2013, 41(1): 86–88.
[118] WARGO K A, EDWARDS J D. Aminoglycoside-induced nephrotoxicity[J]. Journal of pharmacy practice, 2014, 27(6): 573–577.
[119] REN X, VAN DER MEI H C, REN Y, et al. Antimicrobial loading of nanotubular titanium surfaces favoring surface coverage by mammalian cells over bacterial colonization[J]. Materials Science and Engineering: C, 2021, 123: 112021.
[120] TONG S, SUN X, WU A, et al. Improved biocompatibility of TiO2 nanotubes via co-precipitation loading with hydroxyapatite and gentamicin[J]. Coatings, 2021, 11(10): 1191.
[121] ZENG D, DEBABOV D, HARTSELL T L, et al. Approved glycopeptide antibacterial drugs: mechanism of action and resistance[J]. Cold Spring Harbor perspectives in medicine, 2016, 6(12): a026989.
[122] DAVIDSON H, POON M, SAUNDERS R, et al. Tetracycline tethered to titanium inhibits colonization by gram‐negative bacteria[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(7): 1381–1389.
[123] ZHANG H, WANG G, LIU P, et al. Vancomycin-loaded titanium coatings with an interconnected micro-patterned structure for prophylaxis of infections: an in vivo study[J]. RSC advances, 2018, 8(17): 9223–9231.
[124] ANTOCI JR V, ADAMS C S, PARVIZI J, et al. Covalently attached vancomycin provides a nanoscale antibacterial surface.[J]. Clinical Orthopaedics and Related Research, 2007, 461: 81–87.
[125] WANG J, LI J, QIAN S, et al. Antibacterial surface design of titanium-based biomaterials for enhanced bacteria-killing and cell-assisting functions against periprosthetic joint infection[J]. ACS applied materials & interfaces, 2016, 8(17): 11162–11178.
[126] HUANG H, WU Z, YANG Z, et al. In vitro application of drug-loaded hydrogel combined with 3D-printed porous scaffolds[J]. Biomedical Materials, 2022, 17(6): 065019.
[127] QU S, LIU Y, HU Q, et al. Programmable antibiotic delivery to combat methicillin-resistant Staphylococcus aureus through precision therapy[J]. Journal of Controlled Release, 2020, 321: 710–717.
[128] FANG J, CHEN Y C. Nanomaterials for photohyperthermia: a review[J]. Current pharmaceutical design, 2013, 19(37): 6622–6634.
[129] CHENG L, WANG C, FENG L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical reviews, 2014, 114(21): 10869–10939.
[130] MAO C, XIANG Y, LIU X, et al. Local photothermal/photodynamic synergistic therapy by disrupting bacterial membrane to accelerate reactive oxygen species permeation and protein leakage[J]. ACS applied materials & interfaces, 2019, 11(19): 17902–17914.
[131] HUANG B, TAN L, LIU X, et al. A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light[J]. Bioactive materials, 2019, 4: 17–21.
[132] LI Y, LIU X, LI B, et al. Near-infrared light triggered phototherapy and immunotherapy for elimination of methicillin-resistant Staphylococcus aureus biofilm infection on bone implant[J]. ACS nano, 2020, 14(7): 8157–8170.
[133] YUAN Z, TAO B, HE Y, et al. Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy[J]. Biomaterials, 2019, 223: 119479.
[134] LU S, LI R, CHAI M, et al. Nanostructured Cu-doped TiO2 with photothermal effect for prevention of implant-associated infection[J]. Colloids and Surfaces B: Biointerfaces, 2022, 217: 112695.
[135] JIN C, SU K, TAN L, et al. Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array[J]. Materials & Design, 2019, 177: 107845.
[136] LI M, LI L, SU K, et al. Highly effective and noninvasive near‐infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min[J]. Advanced Science, 2019, 6(17): 1900599.
[137] TAN L, LI J, LIU X, et al. Rapid biofilm eradication on bone implants using red phosphorus and near‐infrared light[J]. Advanced Materials, 2018, 30(31): 1801808.
[138] XU K, YUAN Z, DING Y, et al. Near-infrared light triggered multi-mode synergetic therapy for improving antibacterial and osteogenic activity of titanium implants[J]. Applied Materials Today, 2021, 24: 101155.
[139] YANG M, QIU S, COY E, et al. NIR-responsive TiO2 biometasurfaces: toward in situ photodynamic antibacterial therapy for biomedical implants[J]. Advanced Materials, 2022, 34(6):2106314.
[140] SURI R P, THORNTON H M, MURUGANANDHAM M. Disinfection of water using Pt-and Ag-doped TiO2 photocatalysts[J]. Environmental technology, 2012, 33(14): 1651–1659.
[141] LIOU J W, CHANG H H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria[J]. Archivum immunologiae et therapiae experimentalis, 2012, 60: 267–275.
[142] NAN J, GUO Z, DAN S, et al. Promoting osseointegration of Ti implants through micro/nano-Scaled Hierarchical Ti Phosphate / Ti Oxide Hybrid Coating[J]. Acs Nano, 2018, 12(8):7883-91.
[143] ZHANG G, ZHANG X, YANG Y, et al. Near‐Infrared Light‐Triggered Therapy to Combat Bacterial Biofilm Infections by MoSe2/TiO2 Nanorod Arrays on Bone Implants[J]. Advanced Materials Interfaces, 2020, 7(1): 1901706.
[144] XU B, HE Y, ZHANG Y, et al. In situ growth of tunable gold nanoparticles by titania nanotubes templated electrodeposition for improving osteogenesis through modulating macrophages polarization[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 50520–50533.
[145] ZHANG Y, FANG C, ZHANG S, et al. Controlled osteogenic differentiation of human mesenchymal stem cells using dexamethasone-loaded light-responsive microgels[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7051–7059.
[146] LI B, HUANG R, YE J, et al. A self-healing coating containing curcumin for osteoimmunomodulation to ameliorate osseointegration[J]. Chemical Engineering Journal, 2021, 403: 126323.
[147] FAYED O, GRIENSVEN M V, BIRGANI Z T, et al. Transcript-activated coatings on titanium mediate cellular osteogenesis for enhanced osteointegration[J]. Molecular Pharmaceutics, 2021, 18(3):1121-37.
[148] FAENSEN B, WILDEMANN B, HAIN C, et al. Local application of BMP-2 specific plasmids in fibrin glue does not promote implant fixation[J]. Bmc Musculoskeletal Disorders, 2011, 12(1): 163–163.

所在学位评定分委会
材料与化工
国内图书分类号
O63.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545317
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
黄一搏. 表面纳米化和GelMA修饰对钛合金生物学性能的影响研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132521-黄一搏-中国科学院深圳(5515KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄一搏]的文章
百度学术
百度学术中相似的文章
[黄一搏]的文章
必应学术
必应学术中相似的文章
[黄一搏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。