[1] CHAYAMBUKA K, JIANG M, MULDER G, et al. Physics-based modeling of sodium-ionbatteries part I: Experimental parameter determination[J]. Electrochimica Acta, 2022, 404:139726.
[2] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electricalenergy storage[J]. Nature chemistry, 2015, 7(1): 19-29.
[3] KUBOTA K, DAHBI M, HOSAKA T, et al. Towards K-ion and Na-ion batteries as “beyondLi-ion”[J]. The chemical record, 2018, 18(4): 459-479.
[4] EVARTS E C. Lithium batteries: To the limits of lithium[J]. Nature, 2015, 526(7575): S93-S95.
[5] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journalof the American Chemical Society, 2013, 135(4): 1167-1176.
[6] LIU T, ZHANG Y, JIANG Z, et al. Exploring competitive features of stationary sodium ionbatteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5):1512-1533.
[7] KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteriesfor electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54(11):3431-3448.
[8] SAWICKI M, SHAW L L. Advances and challenges of sodium ion batteries as post lithium ionbatteries[J]. RSC Advances, 2015, 5(65): 53129-53154.
[9] VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ionbatteries[J]. Nature reviews materials, 2018, 3(4): 1-11.
[10] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. nature, 2001, 414(6861): 359-367.
[11] XU H, YAN Q, YAO W, et al. Mainstream Optimization Strategies for Cathode Materials ofSodium-Ion Batteries[J]. Small Structures, 2022, 3(4): 2100217.
[12] HANSEN T, WANG C J. Support vector based battery state of charge estimator[J]. Journal ofPower Sources, 2005, 141(2): 351-358.
[13] WEN J, CHEN X, LI X, et al. SOH prediction of lithium battery based on IC curve feature andBP neural network[J]. Energy, 2022, 261: 125234.
[14] TRAN M K, CUNANAN C, PANCHAL S, et al. Investigation of individual cells replacementconcept in lithium-ion battery packs with analysis on economic feasibility and pack design requirements[J]. Processes, 2021, 9(12): 2263.
[15] SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based stateof health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346.
[16] SUBRAMANIAN V R, DIWAKAR V D, TAPRIYAL D. Effffcient macro-micro scale coupledmodeling of batteries[J]. Journal of The Electrochemical Society, 2005, 152(10): A2002.55
[17] PRASAD G K, RAHN C D. Model based identification of aging parameters in lithium ionbatteries[J]. Journal of power sources, 2013, 232: 79-85.
[18] HU X, LI S, PENG H. A comparative study of equivalent circuit models for Li-ion batteries[J].Journal of Power Sources, 2012, 198: 359-367.
[19] CACCIATO M, NOBILE G, SCARCELLA G, et al. Real-time model-based estimation of SOCand SOH for energy storage systems[J]. IEEE Transactions on Power Electronics, 2016, 32(1):794-803.
[20] XIONG R, TIAN J, MU H, et al. A systematic model-based degradation behavior recognitionand health monitoring method for lithium-ion batteries[J]. Applied energy, 2017, 207: 372-383.
[21] STROE D I, ŚWIERCZYŃSKI M, STAN A I, et al. Accelerated lifetime testing methodologyfor lifetime estimation of lithium-ion batteries used in augmented wind power plants[J]. IEEETransactions on Industry Applications, 2014, 50(6): 4006-4017.
[22] BROUSSELY M, BIENSAN P, BONHOMME F, et al. Main aging mechanisms in Li ion batteries[J].Journal of power sources, 2005, 146(1-2): 90-96.
[23] GALEOTTI M, CINÀ L, GIAMMANCO C, et al. Performance analysis and SOH (state ofhealth) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015, 89: 678-686.
[24] GAO Y, LIU K, ZHU C, et al. Co-estimation of state-of-charge and state-of-health for lithiumion batteries using an enhanced electrochemical model[J]. IEEE Transactions on Industrial Electronics, 2021, 69(3): 2684-2696.
[25] ANSELMA P G, KOLLMEYER P, LEMPERT J, et al. Battery state-of-health sensitive energymanagement of hybrid electric vehicles: Lifetime prediction and ageing experimental validation[J]. Applied Energy, 2021, 285: 116440.
[26] ZHENG L, ZHU J, LU D D C, et al. Incremental capacity analysis and differential voltageanalysis based state of charge and capacity estimation for lithium-ion batteries[J]. Energy, 2018,150: 759-769.
[27] DUBARRY M, SVOBODA V, HWU R, et al. Incremental capacity analysis and close-toequilibriumOCV measurements to quantify capacity fade in commercial rechargeable lithiumbatteries[J]. Electrochemical and solid-state letters, 2006, 9(10): A454.
[28] YAZAMI R, TOUZAIN P. A reversible graphite-lithium negative electrode for electrochemicalgenerators[J]. Journal of Power Sources, 1983, 9(3): 365-371.
[29] YAZAMI R, REYNIER Y. Thermodynamics and crystal structure anomalies in lithiumintercalatedgraphite[J]. Journal of Power Sources, 2006, 153(2): 312-318.
[30] DUBARRY M, SVOBODA V, HWU R, et al. A roadmap to understand battery performance inelectric and hybrid vehicle operation[J]. Journal of Power Sources, 2007, 174(2): 366-372.
[31] DUBARRY M, LIAW B Y. Identify capacity fading mechanism in a commercial LiFePO4 cell[J]. Journal of power sources, 2009, 194(1): 541-549.
[32] STROE D I, SCHALTZ E. Lithium-ion battery state-of-health estimation using the incrementalcapacity analysis technique[J]. IEEE Transactions on Industry Applications, 2019, 56(1): 678-685.56
[33] ZHANG Y, LIU Y, WANG J, et al. State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression[J]. Energy, 2022, 239: 121986.
[34] DUBARRY M, LIAW B Y, CHEN M S, et al. Identifying battery aging mechanisms in large format Li ion cells[J]. Journal of Power Sources, 2011, 196(7): 3420-3425.
[35] YOU G W, PARK S, OH D. Real-time state-of-health estimation for electric vehicle batteries:A data-driven approach[J]. Applied energy, 2016, 176: 92-103.
[36] BAI G, WANG P, HU C, et al. A generic model-free approach for lithium-ion battery healthmanagement[J]. Applied Energy, 2014, 135: 247-260.
[37] PASTOR-FERNÁNDEZ C, WIDANAGE W, CHOUCHELAMANE G, et al. A soh diagnosis and prognosis method to identify and quantify degradation modes in li-ion batteries using the ic/dv technique[C]//6th Hybrid and Electric Vehicles Conference (HEVC 2016). IET, 2016:1-6.
[38] 冯志伟. 神经网络, 深度学习与自然语言处理[J]. 上海师范大学学报 (哲学社会科学版), 2021, 2: 110-122.
[39] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
[40] 王红霞, 周家奇, 辜承昊, 等. 用于图像分类的卷积神经网络中激活函数的设计[J]. 浙江大学学报 (工学版), 2019, 53(7): 1363-1373
修改评论