中文版 | English
题名

溶胶-凝胶硼酸盐生物玻璃骨水泥的制备 及理化性质和生物相容性研究

其他题名
PREPARATION, PHYSICOCHEMICAL PROPERTIES AND BIOCOMPATIBILITY OF SOL GEL BORATE BIOGLASS BONE CEMENT
姓名
姓名拼音
Xia Lei
学号
12132583
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
崔旭
导师单位
中国科学院深圳理工大学
论文答辩日期
2023-05-15
论文提交日期
2023-07-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

为了解决临床上应用的骨水泥降解速度慢,骨诱导性差的缺点,本研 究制备硼酸盐骨水泥,通过材料表征实验和生物学实验对硼酸盐生物玻璃 的结构和性能进行表征,选择出一种性能效果最好的硼酸盐生物玻璃,将 选择出硼酸盐生物玻璃与制备好的溶胶凝胶溶液进行不同比例的混合制备 出硼酸盐骨水泥,通过对固液比的调控对硼酸盐生物玻璃的理化性质和生 物活性进行测定,在其中选择出临床上应用效果最好的硼酸盐骨水泥。 使用溶胶-凝胶法制备掺杂不同比例的镁(Mg)和钠(Na)的硼酸盐生物玻 璃,对其进行 X 射线衍射分析,材料粒径分布分析,表面孔结构分析等一 系列材料学表征实验,对硼酸盐生物玻璃的物理化学性质进行研究。通过 离子释放性能测试,细胞活性检测,对硼酸盐生物玻璃的降解性能,生物 活性进行测定。使用透明质酸和柠檬酸制备好的溶胶凝胶溶液和硼酸盐生 物玻璃混合制备硼酸盐骨水泥,对其凝固情况,可注射效果,粘结性,力 学性能,降解性能,生物相容性进行全面测定和评价。 通过溶胶-凝胶法成功制备出硼酸盐生物玻璃,通过一系列材料学表征 实验及生物学实验,得出掺杂 Mg 的硼酸盐生物玻璃性能效果好于掺杂 Na 的硼酸盐生物玻璃,并且在当 Mg 含量为 5%和 10%时生物活性更好。制备 得到的硼酸盐骨水泥具有较好的可注射效果,粘结性,力学性能,降解性 能,生物相容性。综合所有结果,当固液比为 1:1.3 g/ml 时制备出掺 Mg 硼 酸盐骨水泥最符合临床上的要求。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] DIBA M, TAPIA F, Boccaccini A R, et al. Magnesium‐containing bioactive glasses for biomedical applications[J]. International Journal of Applied Glass Science, Wiley Online Library, 2012, 3(3): 221–253.
[2] Lepry W C, Griffanti G, Nazhat S N. Bioactive sol-gel borate glasses with magnesium[J]. Journal of Non-Crystalline Solids, Elsevier, 2022, 581: 121415.
[3] Li J J, Dunstan C R, Entezari A, et al. A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load‐bearing bone defects[J]. Advanced healthcare materials, Wiley Online Library, 2019, 8(8): 1801298.
[4] Graham S M, Leonidou A, Aslam-Pervez N, et al. Biological therapy of bone defects: the immunology of bone allo-transplantation[J]. Expert Opinion on Biological Therapy, Taylor & Francis, 2010, 10(6): 885–901.
[5] Xue N, Ding X, Huang R, et al. Bone tissue engineering in the treatment of bone defects[J]. Pharmaceuticals, MDPI, 2022, 15(7): 879.
[6] Karalashvili L, Kakabadze A, Uhryn M, et al. Bone grafts for reconstruction of bone defects[J]. Georgian medical news, 2018(282): 44–49.
[7] Balasubramanian P, Buettner T, Pacheco V M, et al. Boron-containing bioactive glasses in bone and soft tissue engineering[J]. Journal of the European Ceramic Society, Elsevier, 2018, 38(3): 855–869.
[8] Rahaman M N, Day D E, Bal B S, et al. Bioactive glass in tissue engineering[J]. Acta biomaterialia, Elsevier, 2011, 7(6): 2355–2373.
[9] Amini A R, Laurencin C T, Nukavarapu S P. Bone tissue engineering: recent advances and challenges[J]. Critical ReviewsTM in Biomedical Engineering, Begel House Inc, 2012, 40(5): 363-408
[10] Chen Q, Zhu C, Thouas G A. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites[J]. Progress in Biomaterials, Springer, 2012, 1: 1–22.
[11] Cole K A, Funk G A, Rahaman M N, et al. Characterization of the conversion of bone cement and borate bioactive glass composites[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, Wiley Online Library, 2020, 108(4): 1580–1591.
[12] Starch-Jensen T, Deluiz D, Tinoco E M B. Horizontal alveolar ridge augmentation with allogeneic bone block graft compared with autogenous bone block graft: a systematic review[J]. Journal of oral & maxillofacial research, Journal of Oral & Maxillofacial Research, 2020, 11(1): e1.
[13] Puska M, Moritz N, Aho A J, et al. Morphological and mechanical characterization of composite bone cement containing polymethylmethacrylate matrix functionalized with trimethoxysilyl and bioactive glass[J]. Journal of the mechanical behavior of biomedical materials, Elsevier, 2016, 59: 11–20.
[14] Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management[J]. Journal of tissue engineering, SAGE Publications Sage UK: London, England, 2018, 9: 2041731418776819.
[15] Li C, Hao W, Wu C, et al. Injectable and bioactive bone cement with moderate setting time and temperature using borosilicate bio-glass-incorporated magnesium phosphate[J]. Biomedical Materials, IOP Publishing, 2020, 15(4): 045015.
[16] Stahl A, Yang Y P. Regenerative approaches for the treatment of large bone defects[J]. Tissue Engineering Part B: Reviews, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New, 2021, 27(6): 539–547.
[17] Scalzone A, Flores-Mir C, Carozza D, et al. Secondary alveolar bone grafting using autologous versus alloplastic material in the treatment of cleft lip and palate patients: systematic review and meta-analysis[J]. Progress in Orthodontics, Springer, 2019, 20: 1–10.
[18] Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting[J]. Clinical Orthopaedics and Related Research®, LWW, 2002, 405: 14–23.
[19] Pape H C, Evans A, Kobbe P. Autologous bone graft: properties and techniques[J]. Journal of orthopaedic trauma, LWW, 2010, 24: S36–S40.
[20] Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells[J]. New england journal of medicine, Mass Medical Soc, 2001, 344(5): 385–386.
[21] O’Reilly R J. Allogeneic bone marrow transplantation: current status and future directions[J]. Blood, 1983, 62(5): 941–964.
[22] Socié G, Stone J V, Wingard J R, et al. Long-term survival and late deaths after allogeneic bone marrow transplantation[J]. New England Journal of Medicine, Mass Medical Soc, 1999, 341(1): 14–21.
[23] Okuskhanova E, Suychinov A, Rebezov M, et al. Role of calcium, magnesium and phosphorous in human body[J]. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2018, 9(6): 258–261.
[24] Gabbi C, Cacchioli A, Locardi B, et al. Bioactive glass coating: physicochemical aspects and biological findings[J]. Biomaterials, Elsevier, 1995, 16(7): 515–520.
[25] Bellantone M, Coleman N J, Hench L L. Bacteriostatic action of a novel four‐component bioactive glass[J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, Wiley Online Library, 2000, 51(3): 484–490.
[26] El-Rashidy A A, Roether J A, Harhaus L, et al. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models[J]. Acta biomaterialia, Elsevier, 2017, 62: 1–28.
[27] Hench L L, Jones J R. Bioactive glasses: frontiers and challenges[J]. Frontiers in bioengineering and biotechnology, Frontiers Media SA, 2015, 3: 194.
[28] Jung S B. Borate based bioactive glass scaffolds for hard and soft tissue engineering[D]. Missouri University of Science and Technology, 2010.
[29] Jones J R, Lin S, Yue S, et al. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, SAGE Publications Sage UK: London, England, 2010, 224(12): 1373–1387.
[30] El-Fiqi A, Kim T-H, Kim M, et al. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules[J]. Nanoscale, Royal Society of Chemistry, 2012, 4(23): 7475–7488.
[31] Yin H, Yang C, Gao Y, et al. Fabrication and characterization of strontium-doped borate-based bioactive glass scaffolds for bone tissue engineering[J]. Journal of Alloys and Compounds, Elsevier, 2018, 743: 564–569.
[32] Rodríguez-Merchán E C. Bone healing materials in the treatment of recalcitrant nonunions and bone defects[J]. International Journal of Molecular Sciences, MDPI, 2022, 23(6): 3352.
[33] Jones J R. Reprint of: Review of bioactive glass: From Hench to hybrids[J]. Acta biomaterialia, Elsevier, 2015, 23: S53–S82.
[34] Izquierdo‐Barba I, Salinas A J, Vallet‐Regí M. Bioactive glasses: from macro to nano[J]. International Journal of Applied Glass Science, Wiley Online Library, 2013, 4(2): 149–161.
[35] Ege D, Zheng K, Boccaccini A R. Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions[J]. ACS Applied Bio Materials, ACS Publications, 2022, 5(8): 3608–3622.
[36] Baino F. Bioactive glasses–when glass science and technology meet regenerative medicine[J]. Ceramics International, Elsevier, 2018, 44(13): 14953–14966.
[37] 张亚东. 可注射性硼酸盐生物玻璃骨水泥的制备及对骨缺损修复的研究[D]. 上海: 上海交通大学, 2015.
[38] Boccaccini A R, Erol M, Stark W J, et al. Polymer/bioactive glass nanocomposites for biomedical applications: a review[J]. Composites science and technology, Elsevier, 2010, 70(13): 1764–1776.
[39] Bokov D, Turki Jalil A, Chupradit S, et al. Nanomaterial by sol-gel method: synthesis and application[J]. Advances in Materials Science and Engineering, Hindawi Limited, 2021, 2021: 1–21.
[40] Ward D A, Ko E I. Preparing catalytic materials by the sol-gel method[J]. Industrial & engineering chemistry research, ACS Publications, 1995, 34(2): 421–433.
[41] 欧阳鹿. 掺锶溶胶-凝胶生物玻璃的制备及其多孔骨修复体研究[D]. 华南理工大学, 2020.
[42] Hench L L, West J K. The sol-gel process[J]. Chemical reviews, ACS Publications, 1990, 90(1): 33–72.
[43] Bala N, Khosla C. Preparation and deposition of hydroxyapatite on biomaterials by sol-gel technique-a review[J]. 2014,1:59-69.
[44] Simila H O, Boccaccini A R. Sol-gel bioactive glass containing biomaterials for restorative dentistry: A review[J]. Dental Materials, Elsevier, 2022, 38(5):725-747
[45] Romero-Gavilán F, Araújo-Gomes N, García-Arnáez I, et al. The effect of strontium incorporation into sol-gel biomaterials on their protein adsorption and cell interactions[J]. Colloids and Surfaces B: Biointerfaces, Elsevier, 2019, 174: 9–16.
[46] Furusawa T, Mizunuma K. Osteoconductive properties and efficacy of resorbable bioactive glass as a bone-grafting material[J]. Implant dentistry, LWW, 1997, 6(2): 93–104.
[47] Bi L, Rahaman M N, Day D E, et al. Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model[J]. Acta biomaterialia, Elsevier, 2013, 9(8): 8015–8026.
[48] Zekry K M, Yamamoto N, Hayashi K, et al. Reconstruction of intercalary bone defect after resection of malignant bone tumor[J]. Journal of Orthopaedic Surgery, SAGE Publications Sage UK: London, England, 2019, 27(1): 2309499019832970.
[49] Gerhardt L-C, Boccaccini A R. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering[J]. Materials, MDPI, 2010, 3(7): 3867–3910.
[50] Stanciu G, Sandulescu I, Savu B, et al. Investigation of the hydroxyapatite growth on bioactive glass surface[J]. Journal of Biomedical & Pharmaceutical Engineering, Citeseer, 2007, 1(1): 34–39.
[51] Ni G, Chiu K, Lu W, et al. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty[J]. Biomaterials, Elsevier, 2006, 27(24): 4348–4355.
[52] 廖天舜. 溶胶-凝胶生物玻璃的规模化制备及其多孔骨修复体研究[D]. 华南理工大学, 2019.
[53] Tabia Z, El Mabrouk K, Bricha M, et al. Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity[J]. RSC advances, Royal Society of Chemistry, 2019, 9(22): 12232–12246.
[54] Auregan J-C, Begue T. Bioactive glass for long bone infection: a systematic review[J]. Injury, Elsevier, 2015, 46: S3–S7.
[55] Nakamura T, Fujiwara T, Tsuda Y, et al. The clinical outcomes of hemicortical extracorporeal irradiated autologous bone graft after tumor resection of bone and soft tissue sarcoma[J]. Anticancer research, International Institute of Anticancer Research, 2019, 39(10): 5605–5610.
[56] Kokubo T, Kushitani H, Ohtsuki C, et al. Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid[J]. Journal of Materials science: Materials in medicine, Springer, 1992, 3: 79–83.
[57] Moraschini V, de Almeida D C F, Calasans‐Maia M D, et al. Immunological response of allogeneic bone grafting: A systematic review of prospective studies[J]. Journal of Oral Pathology & Medicine, Wiley Online Library, 2020, 49(5): 395–403.
[58] Jimi E, Hirata S, Osawa K, et al. The current and future therapies of bone regeneration to repair bone defects[J]. International journal of dentistry, Hindawi, 2012, 2012: 148261.
[59] Oryan A, Alidadi S, Moshiri A. Current concerns regarding healing of bone defects[J]. Hard tissue, 2013, 2(2): 1–12.
[60] Erol M, Mouriňo V, Newby P, et al. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering[J]. Acta Biomaterialia, Elsevier, 2012, 8(2): 792–801.
[61] Xynos I D, Edgar A J, Buttery L D, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis[J]. Biochemical and biophysical research communications, Elsevier, 2000, 276(2): 461–465.
[62] Hench L L, Xynos I D, Polak J M. Bioactive glasses for in situ tissue regeneration[J]. Journal of Biomaterials Science, Polymer Edition, Taylor & Francis, 2004, 15(4): 543–562.
[63] Cannio M, Bellucci D, Roether J A, et al. Bioactive glass applications: A literature review of human clinical trials[J]. Materials, MDPI, 2021, 14(18): 5440.
[64] Dinca L, Scorei R. Boron in human nutrition and its regulations use[J]. J Nutr Ther, 2013, 2(1): 22–29.
[65] Khaliq H, Juming Z, Ke-Mei P. The physiological role of boron on health[J]. Biological trace element research, Springer, 2018, 186: 31–51.
[66] Nielsen F H. Boron in human and animal nutrition[J]. Plant and Soil, Springer, 1997, 193(1–2): 199–208.
[67] Moseman R F. Chemical disposition of boron in animals and humans.[J]. Environmental health perspectives, 1994, 102(suppl 7): 113–117.
[68] Bolt H M, Başaran N, Duydu Y. Effects of boron compounds on human reproduction[J]. Archives of Toxicology, Springer, 2020, 94: 717–724.
[69] Kuru R, Yilmaz S, Balan G, et al. Boron-rich diet may regulate blood lipid profile and prevent obesity: A non-drug and self-controlled clinical trial[J]. Journal of Trace Elements in Medicine and Biology, Elsevier, 2019, 54: 191–198.
[70] Yadav V, Sankar M, Pandey L. Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects[J]. Journal of Magnesium and Alloys, Elsevier, 2020, 8(4): 999–1015.
[71] Fischer J, Pröfrock D, Hort N, et al. Reprint of: Improved cytotoxicity testing of magnesium materials[J]. Materials Science and Engineering: B, Elsevier, 2011, 176(20): 1773–1777.
[72] Tan J, Ramakrishna S. Applications of magnesium and its alloys: A review[J]. Applied Sciences, MDPI, 2021, 11(15): 6861.
[73] Dolati S, Rikhtegar R, Mehdizadeh A, et al. The role of magnesium in pathophysiology and migraine treatment[J]. Biological trace element research, Springer, 2020, 196: 375–383.
[74] Gröber U, Schmidt J, Kisters K. Magnesium in prevention and therapy[J]. Nutrients, Multidisciplinary Digital Publishing Institute, 2015, 7(9): 8199–8226.
[75] Witecka A, Bogucka A, Yamamoto A, et al. In vitro degradation of ZM21 magnesium alloy in simulated body fluids[J]. Materials Science and Engineering: C, Elsevier, 2016, 65: 59–69.
[76] Schwalfenberg G K, Genuis S J. The importance of magnesium in clinical healthcare[J]. Scientifica, Hindawi, 2017, 2017: 4179326.
[77] Song G, Song S. A Possible Biodegradable Magnesium Implant Material[J]. Advanced Engineering Materials, 2007, 9(4): 298–302.
[78] Song G, Song S. A possible biodegradable magnesium implant material[J]. Advanced Engineering Materials, Wiley Online Library, 2007, 9(4): 298–302.
[79] Yin J, Hu Y, Yoon J. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH[J]. Chemical Society Reviews, Royal Society of Chemistry, 2015, 44(14): 4619–4644.
[80] Iron M A, Oren M, Martin J M. Alkali and alkaline earth metal compounds: Core—valence basis sets and importance of subvalence correlation[J]. Molecular Physics, Taylor & Francis, 2003, 101(9): 1345–1361.
[81] Volʹnov I I. Peroxides, superoxides, and ozonides of alkali and alkaline earth metals[M]. Springer, 1966, 1.
[82] Fu Q, Rahaman M N, Fu H, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation[J]. Journal of biomedical materials research part A, Wiley Online Library, 2010, 95(1): 164–171.
[83] Bengisu M. Borate glasses for scientific and industrial applications: a review[J]. Journal of materials science, Springer, 2016, 51: 2199–2242.
[84] Fernandes J S, Gentile P, Pires R A, et al. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue[J]. Acta biomaterialia, Elsevier, 2017, 59: 2–11.
[85] Shaaban K S, Alotaibi B, Alharbi N, et al. Physical, optical, and radiation characteristics of bioactive glasses for dental prosthetics and orthopaedic implants applications[J]. Radiation Physics and Chemistry, Elsevier, 2022, 193: 109995.
[86] Bhogi A, Kistaiah P. Spectroscopic properties of alkali alkaline earth borate glasses doped with Fe 3+ ions[J]. Journal of the Australian Ceramic Society, Springer, 2020, 56: 127–138.
[87] Sallam O, Ezz-Eldin F, Elalaily N. Influence of doping transition metals and irradiation on some physical properties of borate glass[J]. Optical and Quantum Electronics, Springer, 2020, 52: 1–20.
[88] Othman H, Elkholy H, Cicconi M R, et al. Spectroscopic study of the role of alkaline earth oxides in mixed borate glasses-site basicity, polarizability and glass structure[J]. Journal of Non-Crystalline Solids, Elsevier, 2020, 533: 119892.
[89] Breusch S, Malchau H, Lee C. The mechanical properties of PMMA bone cement[J]. The well-cemented total hip arthroplasty: theory and practice, Springer, 2005: 60–66.
[90] Wekwejt M, Chen S, Kaczmarek-Szczepańska B, et al. Nanosilver-loaded PMMA bone cement doped with different bioactive glasses–evaluation of cytocompatibility, antibacterial activity, and mechanical properties[J]. Biomaterials science, Royal Society of Chemistry, 2021, 9(8): 3112–3126.
[91] Pahlevanzadeh F, Bakhsheshi-Rad H, Ismail A, et al. Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment[J]. Materials Letters, Elsevier, 2019, 240: 9–12.
[92] Tavakoli M, Bakhtiari S S E, Karbasi S. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation[J]. International journal of biological macromolecules, Elsevier, 2020, 149: 783–793.
[93] Ni G X, Lin J H, Chiu P K, et al. Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement[J]. Journal of Materials Science: Materials in Medicine, Springer, 2010, 21: 377–384.
[94] Al-Moraissi E, Alkhutari A, Abotaleb B, et al. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis[J]. International journal of oral and maxillofacial surgery, Elsevier, 2020, 49(1): 107–120.
[95] Wei X, Xi T, Zheng Y, et al. In vitro comparative effect of three novel borate bioglasses on the behaviors of osteoblastic MC3T3-E1 cells[J]. Journal of Materials Science & Technology, Elsevier, 2014, 30(10): 979–983.
[96] Gillman C E, Jayasuriya A C. FDA-approved bone grafts and bone graft substitute devices in bone regeneration[J]. Materials Science and Engineering: C, Elsevier, 2021, 130: 112466.
[97] Abdelghany A M, Meikhail M S, El-Adawy A, et al. Structural Peculiarities of Borate Bioglass Doped With Silver Oxide[J]. Egyptian Journal of Chemistry, National Information and Documentation Centre (NIDOC), Academy of Scientific, 2022, 65(7): 293–303.
[98] Sharifianjazi F, Moradi M, Abouchenari A, et al. Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass[J]. Ceramics International, Elsevier, 2020, 46(14): 22674–22682.
[99] Gelli R, Ridi F, Baglioni P. The importance of being amorphous: calcium and magnesium phosphates in the human body[J]. Advances in colloid and interface science, Elsevier, 2019, 269: 219–235.
[100]Zheng K, Boccaccini A R. Sol-gel processing of bioactive glass nanoparticles: A review[J]. Advances in Colloid and Interface Science, Elsevier, 2017, 249: 363–373.

所在学位评定分委会
材料与化工
国内图书分类号
O69
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545323
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
夏蕾. 溶胶-凝胶硼酸盐生物玻璃骨水泥的制备 及理化性质和生物相容性研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132583-夏蕾-中国科学院深圳理(3903KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[夏蕾]的文章
百度学术
百度学术中相似的文章
[夏蕾]的文章
必应学术
必应学术中相似的文章
[夏蕾]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。