中文版 | English
题名

阳极电氧化抗坏血酸耦合制氢的催化剂设计与性能研究

其他题名
CATALYSTS DESIGN AND PERFORMANCE INVESTIGATION OF HYDROGEN EVOLUTION COUPLED WITH ANODIC ASCORBIC ACID ELECTROOXIDATION
姓名
姓名拼音
DONG Jiuyi
学号
12132507
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
彭晶
导师单位
深圳理工大学(筹)
论文答辩日期
2023-05-18
论文提交日期
2023-07-13
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       氢能是一种高能量密度,环境友好的能源。电催化水分解制氢技术由可再生的电能驱动, 一种十分环保的氢能制取方法。但是电解水过程中阳极的析氧反应(Oxygen Evolution Reaction, OER)是一个复杂的四电子过程,极大地限制了电解水产氢效率。从热力学角度上,生物质材料的氧化电位低于水的分解电位,有着代替 OER 过程实现低电压大电流产氢的潜力。
       本文设计了一种新的电化学产氢体系,在阳极采用氧化抗坏血酸反应代替OER。并且针对该体系,开发出高熵合金催化剂用于电催化抗坏血酸氧化耦合制氢。在该催化剂作用下,阳极半反应仅需施加 0.5 V 的电压即可实现 10 mA cm-2 的电流密度,远低于 OER 反应的理论电位(1.23 V)。进一步地,采用高温烧结的方法制备出单原子 Fe 催化剂,用于阳极氧化抗坏血酸制氢体系。在该催化剂的作用下,抗坏血酸氧化反应达到 10 mA cm-2 的过电势仅有 12 mV,因而在室温下施加 0.75V 的电压即可达到 1 A cm-2 的电流密度。红外光谱和核磁共振氢谱等测试结果表明,阳极反应产物仅有脱氢抗坏血酸,且阴极产氢的法拉第效率接近 100%。理论计算指出,单原子 Fe 为该反应的催化活性位点,其在费米能级展现出高电子态且在 Fe-3d 轨道和抗坏血酸中 O-2p 轨道之间有很强的电子杂化,这使得单原子 Fe 展现出高的氧化活性。为证明这一体系的实用性,本文在两电极的电解槽装置中测试了电化学制氢性能。结果表明,该体系在 60 ℃下仅需 1.1 V 便可达到 2 A cm-2 的电流密度,其制氢电耗只有电解纯水的一半左右。
       本论文开发的电化学产氢体系不仅可以大幅度降低电压,在阳极还可以生产有价值的副产物,提高体系的经济价值。该体系推动了电化学氧化生物质材料耦合制氢的发展,同时也为解决电解水制氢电耗高、阳极产物价值低等难题提供了新的解决思路。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] WANG Y, CHEN K S, MISHLER J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007.
[2] KIRUBAKARAN A, JAIN S, NEMA R K. A review on fuel cell technologies and power electronic interface[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2430-2440.
[3] ARICò A S, SRINIVASAN S, ANTONUCCI V. DMFCs: From fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2): 133-161.
[4] LIU H, SONG C, ZHANG L, et al. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources, 2006, 155(2): 95-110.
[5] XU W, HUANG H, WU X, et al. Mn-doped Ru/RuO2 nanoclusters@CNT with strong metal-support interaction for efficient water splitting in acidic media[J]. Composites Part B: Engineering, 2022, 242:110013.
[6] HUANG L-A, HE Z, GUO J, et al. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction[J]. Nano Research, 2020, 13(1): 246-254.
[7] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[8] LEI Z, WANG T, ZHAO B, et al. Recent progress in electrocatalysts for acidic water oxidation[J]. Advanced Energy Materials, 2020, 10(23) : 2000478.
[9] AUSFELDER F, BEILMANN C, BERTAU M, et al. Energiespeicherung als element einer sicheren energieversorgung[J]. Chemie Ingenieur Technik, 2015, 87(1-2): 17-89.
[10] ZHAO G, LI P, RUI K, et al. CoSe2 /MoSe2 heterostructures with enriched water adsorption/dissociation sites towards enhanced alkaline hydrogen evolution reaction[J]. Chemistry, 2018, 24(43): 11158-11165.
[11] ZHAO P, ZHANG Y, LI W, et al. Recent advances of antibody drug conjugates for clinical applications[J]. Acta Pharm Sin B, 2020, 10(9): 1589-1600.
[12] YU P, WANG F, SHIFA T A, et al. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction[J]. Nano Energy, 2019, 58: 244-276.
[13] LAHA S, LEE Y, PODJASKI F, et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium[J]. Advanced Energy Materials, 2019, 9(15) : 1803795.
[14] MILLET P, NGAMENI R, GRIGORIEV S A, et al. PEM water electrolyzers: from electrocatalysis to stack development[J]. International Journal of Hydrogen Energy, 2010, 35(10): 5043-5052.
[15] GRIGORIEV S, POREMBSKY V, FATEEV V. Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. International Journal of Hydrogen Energy, 2006, 31(2): 171-175.
[16] IBRAHIM H, ILINCA A, PERRON J. Energy storage systems—Characteristics and comparisons[J]. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221-1250.
[17] FABBRI E, HABEREDER A, WALTAR K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis Science & Technology, 2014, 4(11): 3800-3821.
[18] CASALONGUE H S, KAYA S, VISWANATHAN V, et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode[J]. Nature Communications, 2013, 4(1) : 2817.
[19] MAN I C, SU H Y, CALLE F, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
[20] GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews, 2013, 42(7): 2986-3017.
[21] XU W, WANG H. Earth-abundant amorphous catalysts for electrolysis of water[J]. Chinese Journal of Catalysis, 2017, 38(6): 991-1005.
[22] RONG C, SHEN X, WANG Y, et al. Electronic structure engineering of single-atom Ru Sites via Co-N4 sites for bifunctional pH-universal water splitting[J]. Advanced Materials, 2022, 34(21): e2110103.
[23] ZOU X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180.
[24] JIN H, JOO J, CHAUDHARI N K, et al. Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions[J]. ChemElectroChem, 2019, 6(13): 3244-3253.
[25] ZHU J, HU L, ZHAO P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918.
[26] WANG S, JIANG Q, JU S, et al. Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction[J]. Nature Communications, 2022, 13(1): 6650.
[27] BAI Y, WU Y, ZHOU X, et al. Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution[J]. Nature Communications, 2022, 13(1): 6094.
[28] WANG X, XI S, HUANG P, et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution[J]. Nature, 2022, 611(7937): 702-708.
[29] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
[30] ZHAO Y, LU X F, FAN G, et al. Surface-exposed single-Ni atoms with potential-driven dynamic behaviors for highly efficient electrocatalytic oxygen evolution[J]. Angewandte Chemie, 2022, 61(45): e202212542.
[31] KIM J, SHIH P C, TSAO K C, et al. High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media[J]. Journal of the American Chemical Society, 2017, 139(34): 12076-12083.
[32] ZHANG J, ZHANG L, LIU J, et al. OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction[J]. Nature Communications, 2022, 13(1): 5497.
[33] DU K, ZHANG L, SHAN J, et al. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation[J]. Nature Communications, 2022, 13(1): 5448.
[34] HAUSMANN J N, MENEZES P W. Effect of surface-adsorbed and intercalated (oxy)anions on the oxygen evolution reaction[J]. Angewandte Chemie, 2022, 61(38): e202207279.
[35] LYU S, GUO C, WANG J, et al. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks[J]. Nature Communications, 2022, 13(1): 6171.
[36] REIER T, NONG H N, TESCHNER D, et al. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts[J]. Advanced Energy Materials, 2017, 7(1)
[37] BANDAL H, REDDY K K, CHAUGULE A, et al. Iron-based heterogeneous catalysts for oxygen evolution reaction; change in perspective from activity promoter to active catalyst[J]. Journal of Power Sources, 2018, 395: 106-127.
[38] TAHIR M, PAN L, IDREES F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review[J]. Nano Energy, 2017, 37: 136-157.
[39] ZENG K, ZHANG D. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326.
[40] DAVID M, OCAMPO-MARTíNEZ C, SáNCHEZ-PEñA R. Advances in alkaline water electrolyzers: A review[J]. Journal of Energy Storage, 2019, 23: 392-403.
[41] KHAN M A, ZHAO H, ZOU W, et al. Recent progresses in electrocatalysts for water electrolysis[J]. Electrochemical Energy Reviews, 2018, 1(4): 483-530.
[42] ISMAIL N, QIN F, FANG C, et al. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms[J]. Aggregate, 2021, 2(4) : e106.
[43] RETUERTO M, PASCUAL L, CALLE-VALLEJO F, et al. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media[J]. Nature Communications, 2019, 10(1): 2041.
[44] CHEN S, HUANG H, JIANG P, et al. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media[J]. ACS Catalysis, 2019, 10(2): 1152-1160.
[45] LI M, ZHAO Z, XIA Z, et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals[J]. Angewandte Chemie, 2021, 60(15): 8243-8250.
[46] NONG H N, REIER T, OH H-S, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts[J]. Nature Catalysis, 2018, 1(11): 841-851.
[47] KIM B-J, ABBOTT D F, CHENG X, et al. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide[J]. ACS Catalysis, 2017, 7(5): 3245-3256.
[48] KIM M, PARK J, WANG M, et al. Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media[J]. Applied Catalysis B: Environmental, 2022, 302: 120834.
[49] WANG Y, YANG R, DING Y, et al. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation[J]. Nature Communications, 2023, 14(1): 1412.
[50] WU Z Y, CHEN F Y, LI B, et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis[J]. Nature Materials, 2023, 22(1): 100-108.
[51] MONDSCHEIN J S, KUMAR K, HOLDER C F, et al. Intermetallic Ni2Ta electrocatalyst for the oxygen evolution reaction in highly acidic electrolytes[J]. Inorganic Chemistry, 2018, 57(10): 6010-6015.
[52] PARK H, CHANG S, ZHOU X, et al. Flexible graphene electrode-based organic photovoltaics with record-high efficiency[J]. Nano Letters, 2014, 14(9): 5148-5154.
[53] YIN P T, SHAH S, CHHOWALLA M, et al. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications[J]. Chemical Reviews, 2015, 115(7): 2483-2531.
[54] JI D, FAN L, TAO L, et al. The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries[J]. Angewandte Chemie, 2019, 58(39): 13840-13844.
[55] CAPPELLO V, MARCHETTI L, PARLANTI P, et al. Ultrastructural characterization of the lower motor system in a mouse model of krabbe disease[J]. Scientific Reports, 2016, 6(1): 1.
[56] BLOOR L G, MOLINA P I, SYMES M D, et al. Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ[J]. Journal of the American Chemical Society, 2014, 136(8): 3304-3311.
[57] HUYNH M, BEDIAKO D K, NOCERA D G. A functionally stable manganese oxide oxygen evolution catalyst in acid[J]. Journal of the American Chemical Society, 2014, 136(16): 6002-6010.
[58] MONDSCHEIN J S, CALLEJAS J F, READ C G, et al. Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strongly acidic conditions[J]. Chemistry of Materials, 2017, 29(3): 950-957.
[59] MORENO-HERNANDEZ I A, MACFARLAND C A, READ C G, et al. Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4[J]. Energy & Environmental Science, 2017, 10(10): 2103-2108.
[60] KIM U, CHO Y, JEON D, et al. Zwitterionic conjugated surfactant functionalization of graphene with pH-independent dispersibility: An efficient electron mediator for the oxygen evolution reaction in acidic media[J]. Small, 2020, 16(11): e1906635.
[61] BLASCO A M, SORIANO-LOPEZ J, CARBO J J, et al. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media[J]. Nature Chemistry, 2018, 10(1): 24-30.
[62] CHATTI M, GARDINER J L, FOURNIER M, et al. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 ℃[J]. Nature Catalysis, 2019, 2(5): 457-465.
[63] FAN L, JI Y, WANG G, et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production[J]. Journal of the American Chemical Society, 2022, 144(16): 7224-7235.
[64] LI H, LAI J, LI Z, et al. Multi-sites electrocatalysis in high-entropy alloys[J]. Advanced Functional Materials, 2021, 31(47) : 2106715.
[65] CUI X, ZHANG B, ZENG C, et al. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction[J]. MRS Communications, 2018, 8(3): 1230-1235.
[66] FU S, ZHU C, SONG J, et al. Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts[J]. ACS Energy Letters, 2016, 1(4): 792-796.
[67] GUO Y, TANG J, WANG Z, et al. Elaborately assembled metal sulfides as a bifunctional core-shell structured catalyst for highly efficient electrochemical overall water splitting[J]. Nano Energy, 2018, 47: 494-502.
[68] ZHU C, SHI Q, FENG S, et al. Single-atom catalysts for electrochemical water splitting[J]. ACS Energy Letters, 2018, 3(7): 1713-1721.
[69] ZHENG Y, JIAO Y, ZHU Y, et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. Journal of the American Chemical Society, 2017, 139(9): 3336-3339.
[70] FEI H, DONG J, FENG Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nature Catalysis, 2018, 1(1): 63-72.
[71] HAN L, CHENG H, LIU W, et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs[J]. Nature Materials, 2022, 21(6): 681-688.
[72] YOU B, HAN G, SUN Y. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation[J]. Chemical Communications, 2018, 54(47): 5943-5955.
[73] CHADDERDON D J, XIN L, QI J, et al. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles[J]. Green Chemistry, 2014, 16(8): 3778-3786.
[74] QIN Y, CHENG C, GENG H, et al. Efficient ambipolar transport properties in alternate stacking donor-acceptor complexes: from experiment to theory[J]. Physical Chemistry Chemical Physics, 2016, 18(20): 14094-14103.
[75] LUM Y, HUANG J E, WANG Z, et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol[J]. Nature Catalysis, 2020, 3(1): 14-22.
[76] CHEN Y X, LAVACCHI A, MILLER H A, et al. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nature Communications, 2014, 5: 4036.
[77] WANG W, ZHU Y B, WEN Q, et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation[J]. Advanced Materials, 2019, 31(28): e1900528.
[78] CHEN S, DUAN J, VASILEFF A, et al. Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion[J]. Angewandte Chemie, 2016, 55(11): 3804-3808.
[79] ZHU D, GUO C, LIU J, et al. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation[J]. Chemical Communications, 2017, 53(79): 10906-10909.
[80] WANG G, CHEN J, LI Y, et al. Energy-efficient electrolytic hydrogen production assisted by coupling urea oxidation with a pH-gradient concentration cell[J]. Chemical Communications, 2018, 54(21): 2603-2606.
[81] WANG T, TAO L, ZHU X, et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction[J]. Nature Catalysis, 2021, 5(1): 66-73.
[82] YOU B, JIANG N, LIU X, et al. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst[J]. Angewandte Chemie International Edition, 2016, 55(34): 9913-9917.
[83] YOU B, LIU X, JIANG N, et al. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. Journal of the American Chemical Society, 2016, 138(41): 13639-13646.
[84] LIU W J, XU Z, ZHAO D, et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis[J]. Nature Communications, 2020, 11(1): 265.
[85] ZHANG Y, ZHOU B, WEI Z, et al. Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production[J]. Advanced Materials, 2021, 33(48): e2104791.
[86] YEH J-W. Alloy design strategies and future trends in high-entropy alloys[J]. The Journal of The Minerals, Metals & Materials Society, 2013, 65(12): 1759-1771.
[87] TOMBOC G M, KWON T, JOO J, et al. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance[J]. Journal of Materials Chemistry A, 2020, 8(30): 14844-14862.
[88] HUANG K, ZHANG B, WU J, et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst[J]. Journal of Materials Chemistry A, 2020, 8(24): 11938-11947.
[89] GLASSCOTT M W, PENDERGAST A D, GOINES S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nature Communications, 2019, 10(1): 2650.
[90] JIN Z, LYU J, ZHAO Y-L, et al. Top-down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis[J]. Chemistry of Materials, 2021, 33(5): 1771-1780.
[91] TAJUDDIN A A H, WAKISAKA M, OHTO T, et al. Corrosion-eesistant and high-entropic non-noble-metal electrodes for oxygen evolution in acidic media[J]. Advanced Materials, 2023, 35(3): e2207466.
[92] LIU H, QIN H, KANG J, et al. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting[J]. Chemical Engineering Journal, 2022, 435: 134898.
[93] HASCHKE S, MADER M, SCHLICHT S, et al. Direct oxygen isotope effect identifies the rate-determining step of electrocatalytic OER at an oxidic surface[J]. Nature Communications, 2018, 9(1): 4565.
[94] ZHOU Y, ZHANG J, SONG E, et al. Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures[J]. Nature Communications, 2020, 11(1): 2253.
[95] SHAN J, GUO C, ZHU Y, et al. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media[J]. Chem, 2019, 5(2): 445-459.
[96] SUN J-F, XU Q-Q, QI J-L, et al. Isolated single atoms anchored on N-Doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14630-14656.
[97] CHAO T, HU Y, HONG X, et al. Design of noble metal electrocatalysts on an atomic level[J]. ChemElectroChem, 2019, 6(2): 289-303.
[98] LIU M, WANG L, ZHAO K, et al. Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications[J]. Energy & Environmental Science, 2019, 12(10): 2890-2923.
[99] HAN X, LING X, WANG Y, et al. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries[J]. Angewandte Chemie, 2019, 58(16): 5359-5364.
[100] YANG J, LI W, WANG D, et al. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis[J]. Advanced Materials, 2020, 32(49): e2003300.
[101] ZHENG X, LI P, DOU S, et al. Non-carbon-supported single-atom site catalysts for electrocatalysis[J]. Energy & Environmental Science, 2021, 14(5): 2809-2858.
[102] LEE Y, SUNTIVICH J, MAY K J, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions[J]. The Journal of Physical Chemistry Letters, 2012, 3(3): 399-404.
[103] QIN R, LIU P, FU G, et al. Strategies for stabilizing atomically dispersed metal catalysts[J]. Small Methods, 2018, 2(1): 1700286.
[104] WU X, WANG Y, WU Z-S. Design principle of electrocatalysts for the electrooxidation of organics[J]. Chem, 2022, 8(10): 2594-2629.

所在学位评定分委会
材料与化工
国内图书分类号
TK02
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/545325
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
董久毅. 阳极电氧化抗坏血酸耦合制氢的催化剂设计与性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132507-董久毅-中国科学院深圳(3940KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[董久毅]的文章
百度学术
百度学术中相似的文章
[董久毅]的文章
必应学术
必应学术中相似的文章
[董久毅]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。