[1] KANG J, HAN X, SONG J, et al. The identification of children with autism spectrum disorderby SVM approach on EEG and eye-tracking data[J]. Computers in biology and medicine, 2020,120: 103722.
[2] KHODATARS M, SHOEIBI A, SADEGHI D, et al. Deep learning for neuroimaging-baseddiagnosis and rehabilitation of autism spectrum disorder: a review[J]. Computers in Biologyand Medicine, 2021, 139: 104949.
[3] HIREMATH C S, SAGAR K J V, YAMINI B, et al. Emerging behavioral and neuroimagingbiomarkers for early and accurate characterization of autism spectrum disorders: a systematicreview[J]. Translational Psychiatry, 2021, 11(1): 42.
[4] BRADSHAWJ,STEINERAM,GENGOUXG,etal. Feasibilityandeffectivenessofveryearlyintervention for infants at-risk for autism spectrum disorder: A systematic review[J]. Journalof autism and developmental disorders, 2015, 45: 778-794.
[5] HA S, SOHN I J, KIM N, et al. Characteristics of brains in autism spectrum disorder: structure,function and connectivity across the lifespan[J]. Experimental neurobiology, 2015, 24(4): 273.
[6] GESCHWIND D H, LEVITT P. Autism spectrum disorders: developmental disconnectionsyndromes[J]. Current opinion in neurobiology, 2007, 17(1): 103-111.
[7] CHLEBOWSKI C, ROBINS D L, BARTON M L, et al. Large-scale use of the modified check-list for autism in low-risk toddlers[J]. Pediatrics, 2013, 131(4): e1121-e1127.
[8] SCHOPLER E, REICHLER R J, RENNER B R. The childhood autism rating scale (CARS)[M]. WPS Los Angeles, 2010.
[9] LORD C, RUTTER M, GOODE S, et al. Austism diagnostic observation schedule: A standard-izedobservationofcommunicativeandsocialbehavior[J]. Journalofautismanddevelopmentaldisorders, 1989, 19(2): 185-212.
[10] MULLEN E M, et al. Mullen scales of early learning[M]. AGS Circle Pines, MN, 1995.
[11] RUTTER M, BAILEY A, LORD C. The social communication questionnaire: Manual[M].Western Psychological Services, 2003.
[12] GESCHWIND D H. Advances in autism[J]. Annual review of medicine, 2009, 60: 367-380.
[13] OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast de-pendent on blood oxygenation.[J]. proceedings of the National Academy of Sciences, 1990, 87(24): 9868-9872.
[14] HRDLICKA M, SANDA J, URBANEK T, et al. Diffusion tensor imaging and tractography inautistic, dysphasic, and healthy control children[J]. Neuropsychiatric Disease and Treatment,2019: 2843-2852.
[15] MORIDIANP,GHASSEMIN,JAFARIM,etal. Automaticautismspectrumdisorderdetectionusing artificial intelligence methods with MRI neuroimaging: A review[A]. 2022.
[16] CHEN C P, KEOWN C L, JAHEDI A, et al. Diagnostic classification of intrinsic functionalconnectivityhighlightssomatosensory, defaultmode, andvisualregionsinautism[J]. NeuroIm-age: Clinical, 2015, 8: 238-245.
[17] CHEN H, DUAN X, LIU F, et al. Multivariate classification of autism spectrum disorder usingfrequency-specific resting-state functional connectivity—a multi-center study[J]. Progress inNeuro-Psychopharmacology and Biological Psychiatry, 2016, 64: 1-9.
[18] PLITT M, BARNES K A, MARTIN A. Functional connectivity classification of autism iden-tifies highly predictive brain features but falls short of biomarker standards[J]. NeuroImage:Clinical, 2015, 7: 359-366.
[19] HEINSFELD A S, FRANCO A R, CRADDOCK R C, et al. Identification of autism spectrumdisorderusingdeeplearningandtheABIDEdataset[J]. NeuroImage: Clinical, 2018, 17: 16-23.
[20] HUANG Z A, ZHU Z, YAU C H, et al. Identifying autism spectrum disorder from resting-state fMRI using deep belief network[J]. IEEE Transactions on neural networks and learningsystems, 2020, 32(7): 2847-2861.
[21] ZHANG F, WEI Y, LIU J, et al. Identification of Autism spectrum disorder based on a novelfeature selection method and Variational Autoencoder[J]. Computers in Biology and Medicine,2022, 148: 105854.
[22] MOHAN P, PARAMASIVAM I. Feature reduction using SVM-RFE technique to detect autismspectrum disorder[J]. Evolutionary Intelligence, 2021, 14: 989-997.
[23] KONG Y, GAO J, XU Y, et al. Classification of autism spectrum disorder by combining brainconnectivity and deep neural network classifier[J]. Neurocomputing, 2019, 324: 63-68.
[24] GLOVER G H. Overview of functional magnetic resonance imaging[J]. Neurosurgery Clinics,2011, 22(2): 133-139.
[25] DICHTER G S. Functional magnetic resonance imaging of autism spectrum disorders[J]. Dia-logues in clinical neuroscience, 2022.
[26] BISWAL B, ZERRIN YETKIN F, HAUGHTON V M, et al. Functional connectivity in the mo-tor cortex of resting human brain using echo-planar MRI[J]. Magnetic resonance in medicine,1995, 34(4): 537-541.
[27] WARREN S L, MOUSTAFA A A. Functional magnetic resonance imaging, deep learning, andAlzheimer’s disease: A systematic review[J]. Journal of Neuroimaging, 2023, 33(1): 5-18.
[28] POLDRACK R A. Region of interest analysis for fMRI[J]. Social cognitive and affectiveneuroscience, 2007, 2(1): 67-70.
[29] KRIEGESKORTE N, BODURKA J, BANDETTINI P. Artifactual time-course correlations inecho-planar fMRI with implications for studies of brain function[J]. International Journal ofImaging Systems and Technology, 2008, 18(5-6): 345-349.
[30] PAIS-ROLDÁN P, MATEO C, PAN W J, et al. Contribution of animal models toward under-standing resting state functional connectivity[J]. NeuroImage, 2021, 245: 118630.
[31] DOYLE-THOMAS K A, LEE W, FOSTER N E, et al. Atypical functional brain connectivityduring rest in autism spectrum disorders[J]. Annals of neurology, 2015, 77(5): 866-876.
[32] EILAM-STOCK T, XU P, CAO M, et al. Abnormal autonomic and associated brain activitiesduring rest in autism spectrum disorder[J]. Brain, 2014, 137(1): 153-171.
[33] TRAYNOR J, DOYLE-THOMAS K, HANFORD L, et al. Indices of repetitive behaviour arecorrelated with patterns of intrinsic functional connectivity in youth with autism spectrum dis-order[J]. Brain research, 2018, 1685: 79-90.
[34] KUMAR V, GARG R. Resting state functional connectivity alterations in individuals withautism spectrum disorders: a systematic review[J]. medRxiv, 2021: 2021-07.
[35] SHOU X J, XU X J, ZENG X Z, et al. A volumetric and functional connectivity MRI study ofbrain arginine-vasopressin pathways in autistic children[J]. Neuroscience Bulletin, 2017, 33:130-142.
[36] SHEN M D, LI D D, KEOWN C L, et al. Functional connectivity of the amygdala is disruptedinpreschool-agedchildrenwithautismspectrumdisorder[J]. JournaloftheAmericanAcademyof Child & Adolescent Psychiatry, 2016, 55(9): 817-824.
[37] GUO X, DUAN X, LONG Z, et al. Decreased amygdala functional connectivity in adolescentswith autism: A resting-state fMRI study[J]. Psychiatry Research: Neuroimaging, 2016, 257:47-56.
[38] GREEN S A, HERNANDEZ L, BOOKHEIMER S Y, et al. Salience network connectivity inautism is related to brain and behavioral markers of sensory overresponsivity[J]. Journal of theAmerican Academy of Child & Adolescent Psychiatry, 2016, 55(7): 618-626.
[39] TOMASI D, VOLKOW N D. Reduced local and increased long-range functional connectivityof the thalamus in autism spectrum disorder[J]. Cerebral Cortex, 2019, 29(2): 573-585.
[40] ALAERTS K, NAYAR K, KELLY C, et al. Age-related changes in intrinsic function of thesuperior temporal sulcus in autism spectrum disorders[J]. Social cognitive and affective neuro-science, 2015, 10(10): 1413-1423.
[41] CHIENHY,LINHY,LAIMC,etal. Hyperconnectivityoftherightposteriortemporo-parietaljunction predicts social difficulties in boys with autism spectrum disorder[J]. Autism Research,2015, 8(4): 427-441.
[42] HOFFMANN F, KOEHNE S, STEINBEIS N, et al. Preserved self-other distinction duringempathy in autism is linked to network integrity of right supramarginal gyrus[J]. Journal ofautism and developmental disorders, 2016, 46: 637-648.
[43] BELLMAN R. Dynamic programming, princeton univ[J]. Press Princeton, New Jersey, 1957.
[44] TRUNKGV. Aproblemofdimensionality: Asimpleexample[J]. IEEETransactionsonpatternanalysis and machine intelligence, 1979(3): 306-307.
[45] MCLACHLAN G J. Discriminant analysis and statistical pattern recognition[M]. John Wiley& Sons, 2005.
[46] WANG Y, WANG J, PAL N R. Supervised Feature Selection via Collaborative NeurodynamicOptimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022.
[47] VENKATESHB,ANURADHAJ. Areviewoffeatureselectionanditsmethods[J]. Cyberneticsand information technologies, 2019, 19(1): 3-26.
[48] WANG Y, LI X, WANG J. A neurodynamic optimization approach to supervised feature selec-tion via fractional programming[J]. Neural Networks, 2021, 136: 194-206.
[49] JEE G, CHOUHAN S, GOURISARIA M K, et al. Detection of Autism Spectrum Disor-der Through Orthogonal Decomposition and Pearson Correlation for Feature Selection[C]//2021 4th International Conference on Recent Trends in Computer Science and Technology(ICRTCST). IEEE, 2022: 103-109.
[50] RAKIĆ M, CABEZAS M, KUSHIBAR K, et al. Improving the detection of autism spectrumdisorder by combining structural and functional MRI information[J]. NeuroImage: Clinical,2020, 25: 102181.
[51] SALEH A I, RABIE A H. A new Autism Spectrum Disorder Discovery (ASDD) strategy usingdata mining techniques based on blood tests[J]. Biomedical Signal Processing and Control,2023, 81: 104419.
[52] DUDAM,MAR,HABERN,etal. Useofmachinelearningforbehavioraldistinctionofautismand ADHD[J]. Translational psychiatry, 2016, 6(2): e732-e732.
[53] WASHINGTON P, PASKOV K M, KALANTARIAN H, et al. Feature selection and dimen-sion reduction of social autism data[C]//Pacific Symposium on Biocomputing 2020. WorldScientific, 2019: 707-718.
[54] WIRATSIN I O, NARUPIYAKUL L. Feature selection technique for autism spectrum disor-der[C]//Proceedings of the 5th International Conference on Control Engineering and ArtificialIntelligence. 2021: 53-56.
[55] THABTAHF,ABDELHAMIDN,PEEBLESD. Amachinelearningautismclassificationbasedon logistic regression analysis[J]. Health information science and systems, 2019, 7: 1-11.
[56] JUNGM,TUY,PARKJ,etal. Surface-basedsharedanddistinctrestingfunctionalconnectivityin attention-deficit hyperactivity disorder and autism spectrum disorder[J]. The British Journalof Psychiatry, 2019, 214(6): 339-344.
[57] HUANG H, LIU X, JIN Y, et al. Enhancing the representation of functional connectivity net-works by fusing multi-view information for autism spectrum disorder diagnosis[J]. Humanbrain mapping, 2019, 40(3): 833-854.
[58] KOHAVI R, JOHN G H. Wrappers for feature subset selection[J]. Artificial intelligence, 1997,97(1-2): 273-324.
[59] WANG C, XIAO Z, WANG B, et al. Identification of autism based on SVM-RFE and stackedsparse auto-encoder[J]. Ieee Access, 2019, 7: 118030-118036.
[60] WANG Y, LIU J, XIANG Y, et al. MAGE: automatic diagnosis of autism spectrum disordersusing multi-atlas graph convolutional networks and ensemble learning[J]. Neurocomputing,2022, 469: 346-353.
[61] RETICO A, GIULIANO A, TANCREDI R, et al. The effect of gender on the neuroanatomyof children with autism spectrum disorders: a support vector machine case-control study[J].Molecular autism, 2016, 7: 1-20.
[62] GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification usingsupport vector machines[J]. Machine learning, 2002, 46: 389-422.
[63] HAWEEL R, DEKHIL O, SHALABY A, et al. A novel framework for grading autism severityusing task-based fmri[C]//2020 IEEE 17th International Symposium on Biomedical Imaging(ISBI). IEEE, 2020: 1404-1407.
[64] FREDOA,JAHEDIA,REITERM,etal. Diagnosticclassificationofautismusingresting-statefMRI data and conditional random forest[J]. Age, 2018, 12(2.76): 6-41.
[65] ALI M T, ELNAKIEB Y A, SHALABY A, et al. Autism classification using smri: A recursivefeatures selection based on sampling from multi-level high dimensional spaces[C]//2021 IEEE18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021: 267-270.
[66] YIN W, LI L, WU F X. A semi-supervised autoencoder for autism disease diagnosis[J]. Neu-rocomputing, 2022, 483: 140-147.
[67] ALZUBI R, RAMZAN N, ALZOUBI H. Hybrid feature selection method for autism spectrumdisorderSNPs[C]//2017IEEEConferenceonComputationalIntelligenceinBioinformaticsandComputational Biology (CIBCB). IEEE, 2017: 1-7.
[68] FLEURET F. Fast binary feature selection with conditional mutual information.[J]. Journal ofMachine learning research, 2004, 5(9).
[69] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature, 2015, 521(7553): 436-444.
[70] DOLZ J, DESROSIERS C, WANG L, et al. Deep CNN ensembles and suggestive annotationsfor infant brain MRI segmentation[J]. Computerized Medical Imaging and Graphics, 2020, 79:101660.
[71] LI X, DVORNEK N C, PAPADEMETRIS X, et al. 2-channel convolutional 3D deep neuralnetwork (2CC3D) for fMRI analysis: ASD classification and feature learning[C]//2018 IEEE15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018: 1252-1255.
[72] DELANNOY Q, PHAM C H, CAZORLA C, et al. SegSRGAN: Super-resolution and segmen-tationusinggenerativeadversarialnetworks—ApplicationtoneonatalbrainMRI[J]. Computersin Biology and Medicine, 2020, 120: 103755.
[73] RUMELHART D E, HINTONG E, WILLIAMS R J. Learning internal representations by errorpropagation[R]. California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
[74] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neuralnetworks[J]. science, 2006, 313(5786): 504-507.
[75] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J].Neural computation, 2006, 18(7): 1527-1554.
[76] ERHAN D, COURVILLE A, BENGIO Y, et al. Why does unsupervised pre-training help deeplearning?[C]//Proceedings of the thirteenth international conference on artificial intelligenceand statistics. JMLR Workshop and Conference Proceedings, 2010: 201-208.
[77] NG A, et al. Sparse autoencoder[J]. CS294A Lecture notes, 2011, 72(2011): 1-19.
[78] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust featureswith denoising autoencoders[C]//Proceedings of the 25th international conference on Machinelearning. 2008: 1096-1103.
[79] KINGMA D P, WELLING M. Auto-encoding variational bayes[A]. 2013.
[80] DOERSCH C. Tutorial on variational autoencoders[A]. 2016.
[81] WANG Y, WANG J, WU F X, et al. AIMAFE: Autism spectrum disorder identification withmulti-atlasdeepfeature representationandensemble learning[J]. Journal ofneurosciencemeth-ods, 2020, 343: 108840.
[82] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recog-nition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[83] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convo-lutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[84] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale imagerecognition[A]. 2014.
[85] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedingsof the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[86] BENGS M, GESSERT N, SCHLAEFER A. 4d spatio-temporal deep learning with 4d fmri datafor autism spectrum disorder classification[A]. 2020.
[87] EL-GAZZAR A, QUAAK M, CERLIANI L, et al. A hybrid 3DCNN and 3DC-LSTM basedmodel for 4D spatio-temporal fMRI data: an ABIDE autism classification study[C]//OR 2.0Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging: SecondInternational Workshop, OR 2.0 2019, and Second International Workshop, MLCN 2019, Heldin Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings2. Springer, 2019: 95-102.
[88] SHERKATGHANAD Z, AKHONDZADEH M, SALARI S, et al. Automated detection ofautism spectrum disorder using a convolutional neural network[J]. Frontiers in neuroscience,2020, 13: 1325.
[89] SHRIVASTAVA S, MISHRA U, SINGH N, et al. Control or autism-classification using convo-lutional neural networks on functional MRI[C]//2020 11th International Conference on Com-puting, Communication and Networking Technologies (ICCCNT). IEEE, 2020: 1-6.
[90] DVORNEK N C, VENTOLA P, PELPHREY K A, et al. Identifying autism from resting-statefMRI using long short-term memory networks[C]//Machine Learning in Medical Imaging: 8thInternational Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City,QC, Canada, September 10, 2017, Proceedings 8. Springer, 2017: 362-370.
[91] BYEON K, KWON J, HONG J, et al. Artificial neural network inspired by neuroimagingconnectivity: application in autism spectrum disorder[C]//2020 IEEE International Conferenceon Big Data and Smart Computing (BigComp). IEEE, 2020: 575-578.
[92] ZHOU J, CUI G, HU S, et al. Graph neural networks: A review of methods and applications[J]. AI open, 2020, 1: 57-81.
[93] ASIF N A, SARKER Y, CHAKRABORTTY R K, et al. Graph neural network: A comprehen-sive review on non-euclidean space[J]. IEEE Access, 2021, 9: 60588-60606.
[94] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[A]. 2016.
[95] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[A]. 2017.
[96] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[J].Advances in neural information processing systems, 2017, 30.
[97] YANG C, WANG P, TAN J, et al. Autism spectrum disorder diagnosis using graph attentionnetworkbasedonspatial-constrainedsparsefunctionalbrainnetworks[J]. ComputersinBiologyand Medicine, 2021, 139: 104963.
[98] NOMAN F, YAP S Y, PHAN R C W, et al. Graph Autoencoder-Based Embedded Learning inDynamic Brain Networks for Autism Spectrum Disorder Identification[C]//2022 IEEE Interna-tional Conference on Image Processing (ICIP). IEEE, 2022: 2891-2895.
[99] YAO D, YANG E, SUN L, et al. Integrating Multimodal MRIs for Adult ADHD Identifica-tion with Heterogeneous Graph Attention Convolutional Network[C]//Predictive Intelligencein Medicine: 4th International Workshop, PRIME 2021, Held in Conjunction with MICCAI2021, Strasbourg, France, October 1, 2021, Proceedings 4. Springer, 2021: 157-167.
[100] SONG X, FRANGI A, XIAO X, et al. Integrating similarity awareness and adaptive calibrationin graph convolution network to predict disease[C]//Medical Image Computing and ComputerAssistedIntervention–MICCAI2020: 23rdInternationalConference, Lima, Peru, October4–8,2020, Proceedings, Part VII 23. Springer, 2020: 124-133.
[101] SABOURS,FROSSTN,HINTONGE. DynamicRoutingBetweenCapsules[C/OL]//GUYONI, LUXBURG U V, BENGIO S, et al. Advances in Neural Information Processing Systems:volume 30. Curran Associates, Inc., 2017. https://proceedings.neurips.cc/paper/2017/file/2cad8fa47bbef282badbb8de5374b894-Paper.pdf.
[102] JIAO Z, LI H, FAN Y. Improving diagnosis of autism spectrum disorder and disentanglingits heterogeneous functional connectivity patterns using capsule networks[C]//2020 IEEE 17thInternational Symposium on Biomedical Imaging (ISBI). IEEE, 2020: 1331-1334.
[103] ELSKEN T, METZEN J H, HUTTER F. Neural architecture search: A survey[J]. The Journalof Machine Learning Research, 2019, 20(1): 1997-2017.
[104] ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scal-able image recognition[C]//Proceedings of the IEEE conference on computer vision and patternrecognition. 2018: 8697-8710.
[105] REAL E, AGGARWAL A, HUANG Y, et al. Aging evolution for image classifier architecturesearch[C]//AAAI conference on artificial intelligence: volume 2. 2019: 2.
[106] CHEN L C, COLLINS M, ZHU Y, et al. Searching for efficient multi-scale architectures fordense image prediction[J]. Advances in neural information processing systems, 2018, 31.
[107] REAL E, MOORE S, SELLE A, et al. Large-scale evolution of image classifiers[C]//International Conference on Machine Learning. PMLR, 2017: 2902-2911.
[108] LIU Y, SUN Y, XUE B, et al. A survey on evolutionary neural architecture search[J]. IEEEtransactions on neural networks and learning systems, 2021.
[109] XIE L, YUILLE A. Genetic cnn[C]//Proceedings of the IEEE international conference on com-puter vision. 2017: 1379-1388.
[110] HOLLAND J H. Genetic algorithms[J]. Scientific american, 1992, 267(1): 66-73.
[111] SUN Y, XUE B, ZHANG M, et al. Evolving deep convolutional neural networks for imageclassification[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(2): 394-407.
[112] SUN Y, XUE B, ZHANG M, et al. Completely automated CNN architecture design based onblocks[J]. IEEEtransactionsonneuralnetworksandlearningsystems, 2019, 31(4): 1242-1254.
[113] CAMERO A, TOUTOUH J, STOLFI D H, et al. Evolutionary deep learning for car parkoccupancy prediction in smart cities[C]//Learning and Intelligent Optimization: 12th Interna-tional Conference, LION 12, Kalamata, Greece, June 10–15, 2018, Revised Selected Papers 12.Springer, 2019: 386-401.
[114] GAOZ,LIY,YANGY,etal. AGPSO-optimizedconvolutionalneuralnetworksforEEG-basedemotion recognition[J]. Neurocomputing, 2020, 380: 225-235.
[115] ELSAID A, JAMIY F E, HIGGINS J, et al. Using ant colony optimization to optimize longshort-term memory recurrent neural networks[C]//Proceedings of the Genetic and EvolutionaryComputation Conference. 2018: 13-20.
[116] DE FALCO I, DE PIETRO G, DELLA CIOPPA A, et al. Evolution-based configuration opti-mization of a deep neural network for the classification of obstructive sleep apnea episodes[J].Future Generation Computer Systems, 2019, 98: 377-391.
[117] BYLA E, PANG W. Deepswarm: Optimising convolutional neural networks using swarm in-telligence[C]//AdvancesinComputationalIntelligenceSystems: ContributionsPresentedatthe19th UK Workshop on Computational Intelligence, September 4-6, 2019, Portsmouth, UK 19.Springer, 2020: 119-130.
[118] WANG B, SUN Y, XUE B, et al. A hybrid ga-pso method for evolving architecture and shortconnections of deep convolutional neural networks[C]//PRICAI 2019: Trends in Artificial In-telligence: 16th Pacific Rim International Conference on Artificial Intelligence, Cuvu, YanucaIsland, Fiji, August 26-30, 2019, Proceedings, Part III 16. Springer, 2019: 650-663.
[119] KWASIGROCH A, GROCHOWSKI M, MIKOLAJCZYK M. Deep neural network architec-ture search using network morphism[C]//2019 24th International Conference on Methods andModels in Automation and Robotics (MMAR). IEEE, 2019: 30-35.
[120] SUN Y, XUE B, ZHANG M, et al. A particle swarm optimization-based flexible convolutionalautoencoder for image classification[J]. IEEE transactions on neural networks and learningsystems, 2018, 30(8): 2295-2309.
[121] LIU P, EL BASHA M D, LI Y, et al. Deep evolutionary networks with expedited geneticalgorithms for medical image denoising[J]. Medical image analysis, 2019, 54: 306-315.
[122] ASSUNÇÃO F, LOURENÇO N, MACHADO P, et al. DENSER: deep evolutionary networkstructured representation[J]. Genetic Programming and Evolvable Machines, 2019, 20: 5-35.
[123] YANG Z, WANG Y, CHEN X, et al. Cars: Continuous evolution for efficient neural archi-tecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRecognition. 2020: 1829-1838.
[124] DI MARTINO A, YAN C G, LI Q, et al. The autism brain imaging data exchange: towardsa large-scale evaluation of the intrinsic brain architecture in autism[J]. Molecular psychiatry,2014, 19(6): 659-667.
[125] TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomi-cal labeling of activationsin SPMusing a macroscopic anatomical parcellation ofthe MNIMRIsingle-subject brain[J]. Neuroimage, 2002, 15(1): 273-289.
[126] HILLMAN E M. Coupling mechanism and significance of the BOLD signal: a status report[J].Annual review of neuroscience, 2014, 37: 161-181.
[127] DOSENBACH N U, NARDOS B, COHEN A L, et al. Prediction of individual brain maturityusing fMRI[J]. Science, 2010, 329(5997): 1358-1361.
[128] EICKHOFF S B, STEPHAN K E, MOHLBERG H, et al. A new SPM toolbox for combiningprobabilistic cytoarchitectonic maps and functional imaging data[J]. Neuroimage, 2005, 25(4):1325-1335.
[129] KENNEDY D N, LANGE N, MAKRIS N, et al. Gyri of the human neocortex: an MRI-basedanalysis of volume and variance.[J]. Cerebral Cortex (New York, NY: 1991), 1998, 8(4): 372-384.
[130] MAKRIS N, MEYER J W, BATES J F, et al. MRI-based topographic parcellation of humancerebral white matter and nuclei: II. Rationale and applications with systematics of cerebralconnectivity[J]. Neuroimage, 1999, 9(1): 18-45.
[131] LANCASTER J L, WOLDORFF M G, PARSONS L M, et al. Automated Talairach atlas labelsfor functional brain mapping[J]. Human brain mapping, 2000, 10(3): 120-131.
[132] DING C, PENG H. Minimum redundancy feature selection from microarray gene expressiondata[J]. Journal of bioinformatics and computational biology, 2005, 3(02): 185-205.
[133] PENG H, LONG F, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on pattern analysisand machine intelligence, 2005, 27(8): 1226-1238.
[134] CHEN Y W, LIN C J. Combining SVMs with various feature selection strategies[J]. Featureextraction: foundations and applications, 2006: 315-324.
[135] YANG X, SCHRADER P T, ZHANG N. A deep neural network study of the ABIDE repositoryon autism spectrum classification[J]. International Journal of Advanced Computer Science andApplications, 2020, 11(4).
[136] SEWANI H, KASHEF R. An autoencoder-based deep learning classifier for efficient diagnosisof autism[J]. Children, 2020, 7(10): 182.
[137] XIAO X, YAN M, BASODI S, et al. Efficient hyperparameter optimization in deep learningusing a variable length genetic algorithm[A]. 2020.
[138] DA SILVA G L F, VALENTE T L A, SILVA A C, et al. Convolutional neural network-basedPSOforlungnodulefalsepositivereductiononCTimages[J]. Computermethodsandprogramsin biomedicine, 2018, 162: 109-118.
[139] DUFOURQ E, BASSETT B A. Eden: Evolutionary deep networks for efficient machine learn-ing[C]//2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics(PRASA-RobMech). IEEE, 2017: 110-115.
[140] JHA R R, BHARDWAJ A, GARG D, et al. MHATC: Autism Spectrum Disorder identifica-tionutilizingmulti-headattentionencoderalongwithtemporalconsolidationmodules[C]//202244th Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC). IEEE, 2022: 337-341.
[141] ESLAMI T, MIRJALILI V, FONG A, et al. ASD-DiagNet: a hybrid learning approach fordetection of autism spectrum disorder using fMRI data[J]. Frontiers in neuroinformatics, 2019,13: 70.
[142] LU H, LIU S, WEI H, et al. Multi-kernel fuzzy clustering based on auto-encoder for fMRIfunctional network[J]. Expert Systems with Applications, 2020, 159: 113513
修改评论