[1] FREEDMAN M, KITAEV A, LARSEN M, et al. Topological quantum computation[J]. J. Am. Math. Soc., 2003, 40(1): 31-38.
[2] KITAEV A. Fault-tolerant Quantum Computation by Anyons[J]. Ann. Phys., 2003, 303(1): 2 - 30.
[3] NAYAK C, SIMON S H, STERN A, et al. Non-abelian Anyons and Topological Quantum Computation[J]. Rev. Mod. Phys., 2008, 80: 1083-1159.
[4] QI X L, HUGHES T L, ZHANG S C. Topological field theory of time-reversal invariant insulators[J]. Phys. Rev. B, 2008, 78: 195424.
[5] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178-181.
[6] HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Rev. Mod. Phys., 2010, 82: 3045-3067.
[7] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Rev. Mod. Phys., 2011, 83: 1057-1110.
[8] WEN X G. Colloquium: Zoo of quantum-topological phases of matter[J]. Rev. Mod. Phys., 2017, 89: 041004.
[9] TAO R, WU Y S. Gauge Invariance and Fractional Quantum Hall Effect[J]. Phys. Rev. B, 1984, 30: 1097-1098.
[10] KALMEYER V, LAUGHLIN R B. Equivalence of the resonating-valence-bond and fractional quantum Hall states[J]. Phys. Rev. Lett., 1987, 59: 2095-2098.
[11] BLOK B, WEN X G. Effective Theories of the Fractional Quantum Hall Effect at Generic Filling Fractions[J]. Phys. Rev. B, 1990, 42: 8133-8144.
[12] READ N. Excitation Structure of the Hierarchy Scheme in the Fractional Quantum Hall Effect [J]. Phys. Rev. Lett., 1990, 65: 1502-1505.
[13] TSUI D C, STORMER H L, GOSSARD A C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit[J]. Phys. Rev. Lett., 1982, 48: 1559-1562.
[14] WITTEN E. Quantum field theory and the Jones polynomial[J]. Commun. Math. Phys., 1989, 121(3): 351-399.
[15] WEN X G. Vacuum degeneracy of chiral spin states in compactified space[J]. Phys. Rev. B, 1989, 40(10): 7387.
[16] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance[J]. Phys. Rev. Lett., 1980, 45(6): 494.
[17] LAUGHLIN R B. Quantized Hall conductivity in two dimensions[J]. Phys. Rev. B, 1981, 23 (10): 5632.
[18] HALPERIN B I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential[J]. Phys. Rev. B, 1982, 25(4): 2185.
[19] QI X L, WU Y S, ZHANG S C. Topological quantization of the spin Hall effect in two dimensional paramagnetic semiconductors[J]. Phys. Rev. B, 2006, 74(8): 085308.
[20] BERNEVIG B A, HUGHES T L, ZHANG S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806): 1757-1761.
[21] BERNEVIG B A, ZHANG S C. Quantum spin Hall effect[J]. Phys. Rev. Lett., 2006, 96(10): 106802.
[22] ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Phys., 2009, 5(6): 438-442.
[23] WEN X G. Topological orders in rigid states[J]. Int. J. Mod. Phys. B, 1990, 4(02): 239-271.
[24] WEN X G, NIU Q. Ground-state degeneracy of the fractional quantum Hall states in the pres ence of a random potential and on high-genus Riemann surfaces[J]. Phys. Rev. B, 1990, 41: 9377-9396.
[25] CHEN X, GU Z C, WEN X G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order[J]. Phys. Rev. B, 2010, 82: 155138.
[26] LEVIN M, WEN X G. Colloquium: Photons and electrons as emergent phenomena[J]. Rev. Mod. Phys., 2005, 77: 871-879.
[27] READ N, SACHDEV S. Large-N expansion for frustrated quantum antiferromagnets[J]. Phys. Rev. Lett., 1991, 66: 1773-1776.
[28] WEN X G. Mean-field theory of spin-liquid states with finite energy gap and topological orders [J]. Phys. Rev. B, 1991, 44: 2664-2672.
[29] LAUGHLIN R B. Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations[J]. Phys. Rev. Lett., 1983, 50: 1395-1398.
[30] MOORE J E. Not trivial to realize[J]. Nature Phys., 2015, 11(11): 897-898.
[31] LEVIN M A, WEN X G. String-net condensation: A physical mechanism for topological phases [J]. Phys. Rev. B, 2005, 71: 045110.
[32] DENNIS E, KITAEV A, LANDAHL A, et al. Topological quantum memory[J]. J. Math. Phys., 2002, 43(9): 4452-4505.
[33] WEN X G. Gapless boundary excitations in the quantum Hall states and in the chiral spin states [J]. Phys. Rev. B, 1991, 43: 11025-11036.
[34] KANE C L, MELE E J. Quantum Spin Hall Effect in Graphene[J]. Phys. Rev. Lett., 2005, 95: 226801.
[35] MURAKAMI S, NAGAOSA N, ZHANG S C. Spin-Hall Insulator[J]. Phys. Rev. Lett., 2004, 93: 156804.
[36] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall Conductance in a Two-Dimensional Periodic Potential[J]. Phys. Rev. Lett., 1982, 49: 405-408.
[37] WILCZEK F. Quantum Mechanics of Fractional-Spin Particles[J]. Phys. Rev. Lett., 1982, 49: 957-959.
[38] MOORE G, READ N. Nonabelions in the fractional quantum Hall effect[J]. Nucl. Phys. B, 1991, 360(2-3): 362-396.
[39] KITAEV A. Anyons in an Exactly Solved Model and Beyond[J]. Ann. Phys., 2006, 321(1): 2 - 111.
[40] LEVIN M, WEN X G. Detecting Topological Order in a Ground State Wave Function[J]. Phys. Rev. Lett., 2006, 96: 110405.
[41] KITAEV A, PRESKILL J. Topological Entanglement Entropy[J]. Phys. Rev. Lett., 2006, 96: 110404.
[42] KITAEV A, KONG L. Models for Gapped Boundaries and Domain Walls[J]. Commun. Math. Phys., 2012, 313(2): 351-373.
[43] KONG L. Anyon Condensation and Tensor Categories[J]. Nucl. Phys. B, 2014, 886: 436 - 482.
[44] KONG L, ZHENG H. Categories of quantum liquids I[J]. J. High Energy Phys., 2022, 2022 (8): 1-44.
[45] KOHMOTO M. Topological invariant and the quantization of the Hall conductance[J]. Annals of Physics, 1985, 160(2): 343-354.
[46] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum spin Hall insulator state in HgTe quantum wells[J]. Science, 2007, 318(5851): 766-770.
[47] WENG H, FANG C, FANG Z, et al. Weyl semimetal phase in noncentrosymmetric transition metal monophosphides[J]. Phys. Rev. X, 2015, 5(1): 011029.
[48] SOLUYANOV A A, GRESCH D, WANG Z, et al. Type-ii weyl semimetals[J]. Nature, 2015, 527(7579): 495-498.
[49] KITAEV A Y. Unpaired Majorana fermions in quantum wires[J]. Physics-uspekhi, 2001, 44 (10S): 131.
[50] HALDANE F D M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the” parity anomaly”[J]. Phys. Rev. Lett., 1988, 61(18): 2015.
[51] FU L, KANE C L, MELE E J. Topological insulators in three dimensions[J]. Phys. Rev. Lett., 2007, 98(10): 106803.
[52] HSIEH D, XIA Y, WRAY L, et al. Observation of unconventional quantum spin textures in topological insulators[J]. Science, 2009, 323(5916): 919-922.
[53] BURKOV A, HOOK M, BALENTS L. Topological nodal semimetals[J]. Phys. Rev. B, 2011, 84(23): 235126.
[54] WANG Z, SUN Y, CHEN X Q, et al. Dirac semimetal and topological phase transitions in A 3 Bi (A= Na, K, Rb)[J]. Phys. Rev. B, 2012, 85(19): 195320.
[55] LV B, WENG H, FU B, et al. Experimental discovery of Weyl semimetal TaAs[J]. Phys. Rev. X, 2015, 5(3): 031013.
[56] ZHU Z, WINKLER G W, WU Q, et al. Triple point topological metals[J]. Phys. Rev. X, 2016, 6(3): 031003.
[57] SCHINDLER F, COOK A M, VERGNIORY M G, et al. Higher-order topological insulators [J]. Sci. Adv., 2018, 4(6): eaat0346.
[58] READ N, GREEN D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect[J]. Phys. Rev. B, 2000, 61: 10267-10297.
[59] FU L, KANE C L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator[J]. Phys. Rev. Lett., 2008, 100: 096407.
[60] CHUNG S B, QI X L, MACIEJKO J, et al. Conductance and noise signatures of Majorana backscattering[J]. Phys. Rev. B, 2011, 83(10): 100512.
[61] MOURIK V, ZUO K, FROLOV S M, et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices[J]. Science, 2012, 336(6084): 1003-1007.
[62] GE J F, LIU Z L, LIU C, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO 3[J]. Nature Mater., 2015, 14(3): 285-289.
[63] LIAO M, ZANG Y, GUAN Z, et al. Superconductivity in few-layer stanene[J]. Nature Phys., 2018, 14(4): 344-348.
[64] ZHANG H, LIU C X, GAZIBEGOVIC S, et al. Quantized majorana conductance[J]. Nature (London), 2018, 556(7699): 74-79.
[65] ZHANG H, LIU C X, GAZIBEGOVIC S, et al. Retraction note: Quantized majorana conduc tance[J]. Nature (London), 2021, 591(7851): E30-E30.
[66] RIEFFEL E G, POLAK W H. Quantum computing: A gentle introduction[M]. MIT Press, 2011.
[67] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Phys.: Rep. Prog. Phys., 2000, 48(9-11): 771-783.
[68] NIELSEN M A, CHUANG I. Quantum computation and quantum information[M]. American Association of Physics Teachers, 2002.
[69] KAYE P, LAFLAMME R, MOSCA M. An introduction to quantum computing[M]. OUP Oxford, 2006.
[70] BULUTA I, NORI F. Quantum simulators[J]. Science, 2009, 326(5949): 108-111.
[71] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Rev. Mod. Phys., 2014, 86: 153-185.
[72] LLOYD S. Universal quantum simulators[J]. Science, 1996, 273(5278): 1073-1078.
[73] WIESNER S. Simulations of many-body quantum systems by a quantum computer[A]. 1996.
[74] ABRAMS D S, LLOYD S. Simulation of many-body Fermi systems on a universal quantum computer[J]. Phys. Rev. Lett., 1997, 79(13): 2586.
[75] LIDAR D A, BIHAM O. Simulating Ising spin glasses on a quantum computer[J]. Phys. Rev. E, 1997, 56(3): 3661.
[76] ZALKA C. Simulating quantum systems on a quantum computer[J]. Proc. Math. Phys. Eng.es, 1998, 454(1969): 313-322.
[77] ZALKA C. Efficient simulation of quantum systems by quantum computers[J]. Fortschritte der Phys.: Rep. Prog. Phys., 1998, 46(6-8): 877-879.
[78] TERHAL B M, DIVINCENZO D P. Problem of equilibration and the computation of correlationfunctions on a quantum computer[J]. Phys. Rev. A, 2000, 61(2): 022301.
[79] MARZUOLI A, RASETTI M. Spin network quantum simulator[J]. Phys. Lett. A, 2002, 306 (2-3): 79-87.
[80] VERSTRAETE F, CIRAC J I, LATORRE J I. Quantum circuits for strongly correlated quantum systems[J]. Phys. Rev. A, 2009, 79(3): 032316.
[81] RAEISI S, WIEBE N, SANDERS B C. Quantum-circuit design for efficient simulations of many-body quantum dynamics[J]. New. J. Phys., 2012, 14(10): 103017.
[82] LI K, WAN Y, HUNG L Y, et al. Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator[J]. Phys. Rev. Lett., 2017, 118: 080502.
[83] ZHANG Z, LONG X, ZHAO X, et al. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit[J]. Phys. Rev. A, 2022, 105(3): L030402.
[84] HAI Y J, ZHANG Z, ZHENG H, et al. Uniquely identifying topological order based on boundary-bulk duality and anyon condensation[J]. Natl. Sci. Rev., 2023, 10(3): nwac264.
[85] DASKIN A, KAIS S. Decomposition of unitary matrices for finding quantum circuits: appli cation to molecular Hamiltonians[J]. J. Chem. Phys., 2011, 134(14): 144112.
[86] ABRAMS D S, LLOYD S. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors[J]. Phys. Rev. Lett., 1999, 83(24): 5162.
[87] ASPURU-GUZIK A, DUTOI A D, LOVE P J, et al. Simulated quantum computation of molec ular energies[J]. Science, 2005, 309(5741): 1704-1707.
[88] MEYER D A. Quantum computing classical physics[J]. Philos. Trans. Royal Soc. A, 2002, 360 (1792): 395-405.
[89] SINHA S, RUSSER P. Quantum computing algorithm for electromagnetic field simulation[J]. Quantum Inf. Process., 2010, 9: 385-404.
[90] YUNG M H, NAGAJ D, WHITFIELD J D, et al. Simulation of classical thermal states on a quantum computer: A transfer-matrix approach[J]. Phys. Rev. A, 2010, 82(6): 060302.
[91] MANOUSAKIS E. A quantum-dot array as model for copper-oxide superconductors: A ded icated quantum simulator for the many-fermion problem[J]. J. Low Temp. Phys, 2002, 126: 1501-1513.
[92] FISCHER U R, SCHÜTZHOLD R. Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates[J]. Phys. Rev. A, 2004, 70(6): 063615.
[93] PORRAS D, CIRAC J I. Effective quantum spin systems with trapped ions[J]. Phys. Rev. Lett., 2004, 92(20): 207901.
[94] ZAGOSKIN A M, SAVEL’EV S, NORI F. Modeling an adiabatic quantum computer via an exact map to a gas of particles[J]. Phys. Rev. Lett., 2007, 98(12): 120503.
[95] LAMATA L, LEÓN J, SCHÄTZ T, et al. Dirac equation and quantum relativistic effects in a single trapped ion[J]. Phys. Rev. Lett., 2007, 98(25): 253005.
[96] GERRITSMA R, KIRCHMAIR G, ZÄHRINGER F, et al. Quantum simulation of the Dirac equation[J]. Nature, 2010, 463(7277): 68-71.
[97] AGUADO M, BRENNEN G K, VERSTRAETE F, et al. Creation, Manipulation, and Detectionof Abelian and Non-Abelian Anyons in Optical Lattices[J]. Phys. Rev. Lett., 2008, 101: 260501.
[98] YOU J Q, SHI X F, HU X, et al. Quantum emulation of a spin system with topologicallyprotected ground states using superconducting quantum circuits[J]. Phys. Rev. B, 2010, 81:014505.
[99] GIORGI G L, PAGANELLI S, GALVE F. Ion-trap simulation of the quantum phase transitionin an exactly solvable model of spins coupled to bosons[J]. Phys. Rev. A, 2010, 81: 052118.
[100] BYRNES T, KIM N Y, KUSUDO K, et al. Quantum simulation of Fermi-Hubbard models insemiconductor quantum-dot arrays[J]. Phys. Rev. B, 2008, 78: 075320.
[101] PENG X, DU J, SUTER D. Quantum phase transition of ground-state entanglement in a Heisen berg spin chain simulated in an NMR quantum computer[J]. Phys. Rev. A, 2005, 71: 012307.
[102] HAN Y J, RAUSSENDORF R, DUAN L M. Scheme for demonstration of fractional statisticsof anyons in an exactly solvable model[J]. Phys. Rev. Lett., 2007, 98(15): 150404.
[103] LU C Y, GAO W B, GÜHNE O, et al. Demonstrating anyonic fractional statistics with a six qubit quantum simulator[J]. Phys. Rev. Lett., 2009, 102(3): 030502.
[104] FENG G, LONG G, LAFLAMME R. Experimental simulation of anyonic fractional statisticswith an NMR quantum-information processor[J]. Phys. Rev. A, 2013, 88: 022305.
[105] PARK A J, MCKAY E, LU D, et al. Simulation of anyonic statistics and its topological pathindependence using a seven-qubit quantum simulator[J]. New J. Phys., 2016, 18(4): 043043.
[106] ZHONG Y P, XU D, WANG P, et al. Emulating Anyonic Fractional Statistical Behavior in aSuperconducting Quantum Circuit[J]. Phys. Rev. Lett., 2016, 117: 110501.
[107] DAI H N, YANG B, REINGRUBER A, et al. Four-body ring-exchange interactions and anyonicstatistics within a minimal toric-code Hamiltonian[J]. Nat. Phys., 2017, 13(12): 1195-1200.
[108] LUO Z, LI J, LI Z, et al. Experimentally Probing Topological Order and Its Breakdown throughModular Matrices[J]. Nat. Phys., 2018, 14(2): 160-165.
[109] SONG C, XU D, ZHANG P, et al. Demonstration of topological robustness of anyonic braidingstatistics with a superconducting quantum circuit[J]. Phys. Rev. Lett., 2018, 121(3): 030502.
[110] SONG C, XU D, ZHANG P, et al. Demonstration of Topological Robustness of Anyonic Braid ing Statistics with a Superconducting Quantum Circuit[J]. Phys. Rev. Lett., 2018, 121: 030502.
[111] ANDERSEN C K, REMM A, LAZAR S, et al. Repeated quantum error detection in a surfacecode[J]. Nature Phys., 2020, 16(8): 875-880.
[112] ERHARD A, NAUTRUP H P, METH M, et al. Entangling logical qubits with lattice surgery[J]. Nature (London), 2021, 589(7841): 220-224.
[113] SATZINGER K, LIU Y J, SMITH A, et al. Realizing topologically ordered states on a quantumprocessor[J]. Science, 2021, 374(6572): 1237-1241.
[114] FAN Y A, LI Y, HU Y, et al. Experimental realization of a topologically protected Hadamardgate via braiding Fibonacci anyons[A]. 2022.
[115] MIGNARD M, SCHAUENBURG P. Modular categories are not determined by their modulardata[A]. 2017.
[116] LIU S, GAO W, ZHANG Q, et al. Topologically protected edge state in two-dimensional Su–Schrieffer–Heeger circuit[J]. Res., 2019, 2019.
[117] XIE B Y, SU G X, WANG H F, et al. Visualization of Higher-Order Topological Insulat ing Phases in Two-Dimensional Dielectric Photonic Crystals[J]. Phys. Rev. Lett., 2019, 122:233903.
[118] LIU F, WAKABAYASHI K. Novel Topological Phase with a Zero Berry Curvature[J]. Phys.Rev. Lett., 2017, 118: 076803.
[119] XIE B Y, WANG H F, WANG H X, et al. Second-order photonic topological insulator withcorner states[J]. Phys. Rev. B, 2018, 98: 205147.
[120] OBANA D, LIU F, WAKABAYASHI K. Topological edge states in the Su-Schrieffer-Heegermodel[J]. Phys. Rev. B, 2019, 100: 075437.
[121] ZHENG L Y, ACHILLEOS V, RICHOUX O, et al. Observation of Edge Waves in a Two Dimensional Su-Schrieffer-Heeger Acoustic Network[J]. Phys. Rev. Appl., 2019, 12: 034014.
[122] BANSIL A, LIN H, DAS T. Colloquium: Topological band theory[J]. Rev. Mod. Phys., 2016,88: 021004.
[123] ARMITAGE N, MELE E, VISHWANATH A. Weyl and Dirac semimetals in three-dimensionalsolids[J]. Rev. Mod. Phys., 2018, 90(1): 015001.
[124] HUANG C, ZHOU B T, ZHANG H, et al. Proximity-induced surface superconductivity in Diracsemimetal Cd3As2[J]. Nat. Commun., 2019, 10(1): 2217.
[125] LI Y, WU Z, ZHOU J, et al. Enhanced anisotropic superconductivity in the topological nodal line semimetal In x TaS 2[J]. Phys. Rev. B, 2020, 102(22): 224503.
[126] LI Y, WU Y, XU C, et al. Anisotropic gapping of topological Weyl rings in the charge-density wave superconductor InxTaSe2[J]. Science Bulletin, 2021, 66(3): 243-249.
[127] BIAN G, CHANG T R, ZHENG H, et al. Drumhead surface states and topological nodal-linefermions in TlTaSe 2[J]. Phys. Rev. B, 2016, 93(12): 121113.
[128] ZHANG C L, YUAN Z, BIAN G, et al. Superconducting properties in single crystals of thetopological nodal semimetal PbTaSe 2[J]. Phys. Rev. B, 2016, 93(5): 054520.
[129] GUAN S Y, CHEN P J, CHU M W, et al. Superconducting topological surface states in thenoncentrosymmetric bulk superconductor PbTaSe2[J]. Sci. Adv., 2016, 2(11): e1600894.
[130] DU Y, BO X, WANG D, et al. Emergence of topological nodal lines and type-II Weyl nodesin the strong spin-orbit coupling system InNb X 2 (X= S, Se)[J]. Phys. Rev. B, 2017, 96(23):235152.
[131] SCHNYDER A P, BRYDON P, TIMM C. Types of topological surface states in nodal noncen trosymmetric superconductors[J]. Phys. Rev. B, 2012, 85(2): 024522.
[132] SCHNYDER A P, BRYDON P M. Topological surface states in nodal superconductors[J]. J.Phys. Condens., 2015, 27(24): 243201.
[133] MENG T, BALENTS L. Weyl superconductors[J]. Phys. Rev. B, 2012, 86(5): 054504.
[134] BEDNIK G, ZYUZIN A, BURKOV A. Superconductivity in Weyl metals[J]. Phys. Rev. B,2015, 92(3): 035153.
[135] KOBAYASHI S, SATO M. Topological superconductivity in Dirac semimetals[J]. Phys. Rev.Lett., 2015, 115(18): 187001.
[136] QIN S, HU L, LE C, et al. Quasi-1D topological nodal vortex line phase in doped supercon ducting 3D Dirac semimetals[J]. Phys. Rev. Lett., 2019, 123(2): 027003.
[137] NANDKISHORE R. Weyl and Dirac loop superconductors[J]. Phys. Rev. B, 2016, 93(2):020506.
[138] WANG Y, NANDKISHORE R M. Topological surface superconductivity in doped Weyl loopmaterials[J]. Phys. Rev. B, 2017, 95(6): 060506.
[139] FU P H, LIU J F, WU J. Transport properties of Majorana drumhead surface states in topologicalnodal-ring superconductors[J]. Phys. Rev. B, 2020, 102(7): 075430.
[140] TSUI D C, STORMER H L, GOSSARD A C. Two-dimensional Magnetotransport in the Ex treme Quantum Limit[J]. Phys. Rev. Lett., 1982, 48: 1559-1562.
[141] WEN X G. Topological Orders in Rigid States[J]. Int. J. Mod. Phys. B, 1990, 04(02): 239-271.
[142] WEN X G, NIU Q. Ground-state Degeneracy of the Fractional Quantum Hall States in thePresence of a Random Potential and on High-genus Riemann Surfaces[J]. Phys. Rev. B, 1990,41: 9377-9396.
[143] WEN X, ZEE A. Quantum statistics and superconductivity in two spatial dimensions[J]. Nucl.Phys. B, Proc. Suppl., 1990, 15: 135-156.
[144] WEN X G. Topological Orders and Chern-Simons Theory in Strongly Correlated QuantumLiquid[J]. Int. J. Mod. Phys. B, 1991, 05(10): 1641-1648.
[145] CHEN X, GU Z C, LIU Z X, et al. Symmetry-Protected Topological Orders in InteractingBosonic Systems[J]. Science, 2012, 338(6114): 1604-1606.
[146] DAS SARMA S, FREEDMAN M, NAYAK C. Topologically Protected Qubits from a PossibleNon-Abelian Fractional Quantum Hall State[J]. Phys. Rev. Lett., 2005, 94: 166802.
[147] NAYAK C, SIMON S H, STERN A, et al. Non-Abelian anyons and topological quantum com putation[J]. Rev. Mod. Phys., 2008, 80: 1083-1159.
[148] TERHAL B M. Quantum error correction for quantum memories[J]. Rev. Mod. Phys., 2015,87: 307-346.
[149] BRAVYI S B, KITAEV A Y. Quantum Codes on a Lattice with Boundary[A].
[150] WEN X G. Colloquium: Zoo of Quantum-topological Phases of Matter[J]. Rev. Mod. Phys.,2017, 89: 041004.
[151] HAN Y J, RAUSSENDORF R, DUAN L M. Scheme for Demonstration of Fractional Statisticsof Anyons in an Exactly Solvable Model[J]. Phys. Rev. Lett., 2007, 98: 150404.
[152] ROWELL E, STONG R, WANG Z. On Classification of Modular Tensor Categories[J]. Com mun. Math. Phys., 2009, 292(2): 343-389.
[153] WEN X G. Modular transformation and bosonic/fermionic topological orders in Abelian frac tional quantum Hall states[A].
[154] ZHANG Y, GROVER T, TURNER A, et al. Quasiparticle statistics and braiding from ground state entanglement[J]. Phys. Rev. B, 2012, 85: 235151
[155] CINCIO L, VIDAL G. Characterizing Topological Order by Studying the Ground States on anInfinite Cylinder[J]. Phys. Rev. Lett., 2013, 110: 067208.
[156] LIU F, WANG Z, YOU Y Z, et al. Modular transformations and topological orders in twodimensions[A]. 2014. arXiv: 1303.0829.
[157] JIANG S, MESAROS A, RAN Y. Generalized Modular Transformations in (3 + 1)D Topolog ically Ordered Phases and Triple Linking Invariant of Loop Braiding[J]. Phys. Rev. X, 2014, 4:031048.
[158] MEI J W, CHEN J Y, HE H, et al. Gapped spin liquid with ℤ2topological order for the kagomeHeisenberg model[J]. Phys. Rev. B, 2017, 95: 235107.
[159] HU Y, STIRLING S D, WU Y S. Ground-state degeneracy in the Levin-Wen model for topo logical phases[J]. Phys. Rev. B, 2012, 85: 075107.
[160] LU C Y, GAO W B, GÜHNE O, et al. Demonstrating Anyonic Fractional Statistics with aSix-Qubit Quantum Simulator[J]. Phys. Rev. Lett., 2009, 102: 030502.
[161] ZHONG Y P, XU D, WANG P, et al. Emulating Anyonic Fractional Statistical Behavior in aSuperconducting Quantum Circuit[J]. Phys. Rev. Lett., 2016, 117: 110501.
[162] ANDERSEN C K, REMM A, LAZAR S, et al. Repeated quantum error detection in a surfacecode[J]. Nat. Phys., 2020, 16(8): 875-880.
[163] SATZINGER K J, LIU Y J, SMITH A, et al. Realizing topologically ordered states on a quantumprocessor[J]. Science, 2021, 374(6572): 1237-1241.
[164] CINCIO L, VIDAL G. Characterizing Topological Order by Studying the Ground States on anInfinite Cylinder[J]. Phys. Rev. Lett., 2013, 110: 067208.
[165] KNILL E, LAFLAMME R. Power of One Bit of Quantum Information[J]. Phys. Rev. Lett.,1998, 81: 5672-5675.
[166] MIQUEL C, PAZ J P, SARACENO M, et al. Interpretation of tomography and spectroscopy asdual forms of quantum computation[J]. Nature (London), 2002, 418(6893): 59-62.
[167] HUNG L Y, WAN Y. String-net models with 𝑍𝑁 fusion algebra[J]. Phys. Rev. B, 2012, 86:235132.
[168] ETINGOF P, GELAKI S, NIKSHYCH D, et al. Tensor Categories: volume 205[M]. Am. Math.Soc., 2016.
[169] CONG I, CHENG M, WANG Z. Universal Quantum Computation with Gapped Boundaries[J].Phys. Rev. Lett., 2017, 119: 170504.
[170] CLEVE R, EKERT A, MACCHIAVELLO C, et al. Quantum algorithms revisited[J]. Proc.Math. Phys. Eng., 1998, 454(1969): 339-354.
[171] BARENCO A, BENNETT C H, CLEVE R, et al. Elementary gates for quantum computation[J]. Phys. Rev. A, 1995, 52: 3457-3467.
[172] ABRAMS D S, LLOYD S. Quantum Algorithm Providing Exponential Speed Increase forFinding Eigenvalues and Eigenvectors[J]. Phys. Rev. Lett., 1999, 83: 5162-5165.
[173] KNILL E, LAFLAMME R. Power of One Bit of Quantum Information[J]. Phys. Rev. Lett.,1998, 81: 5672-5675.
[174] PASSANTE G, MOUSSA O, RYAN C A, et al. Experimental Approximation of the JonesPolynomial with One Quantum Bit[J]. Phys. Rev. Lett., 2009, 103: 250501.
[175] KHOURY A Z, SOUZA A M, OXMAN L E, et al. Intrinsic bounds of a two-qudit randomevolution[J]. Phys. Rev. A, 2018, 97: 042343.
[176] VIND F A, FOERSTER A, OLIVEIRA I S, et al. Experimental realization of the Yang-BaxterEquation via NMR interferometry[J]. Sci. Rep., 2016, 6(1): 1-8.
[177] NIE X, ZHANG Z, ZHAO X, et al. Detecting scrambling via statistical correlations betweenrandomized measurements on an NMR quantum simulator[A]. 2019.
[178] NIE X, WEI B B, CHEN X, et al. Experimental Observation of Equilibrium and DynamicalQuantum Phase Transitions via Out-of-Time-Ordered Correlators[J]. Phys. Rev. Lett., 2020,124: 250601.
[179] NIE X, ZHU X, XI C, et al. Experimental Realization of a Quantum Refrigerator Driven byIndefinite Causal Orders[A]. 2020.
[180] RYAN C A, NEGREVERGNE C, LAFOREST M, et al. Liquid-state nuclear magnetic reso nance as a testbed for developing quantum control methods[J]. Phys. Rev. A, 2008, 78: 012328.
[181] KHANEJA N, REISS T, KEHLET C, et al. Optimal control of coupled spin dynamics: designof NMR pulse sequences by gradient ascent algorithms[J]. J. Magn. Reson., 2005, 172(2):296-305.
[182] ZHANG S C, HANSSON T H, KIVELSON S. Effective-field-theory Model for the FractionalQuantum Hall Effect[J]. Phys. Rev. Lett., 1989, 62: 82-85.
[183] DENNIS E, KITAEV A, LANDAHL A, et al. Topological Quantum Memory[J]. J. Math. Phys.,2002, 43(9): 4452-4505.
[184] BRAVYI S B, KITAEV A Y. Quantum Codes on a Lattice with Boundary[A]. 1998.
[185] FELDMAN D E, HALPERIN B I. Fractional charge and fractional statistics in the quantumHall effects[J]. Reports on Progress in Physics, 2021, 84(7): 076501.
[186] BONDERSON P, SHTENGEL K, SLINGERLAND J K. Probing Non-Abelian Statistics withQuasiparticle Interferometry[J]. Phys. Rev. Lett., 2006, 97: 016401.
[187] MCCLURE D T, CHANG W, MARCUS C M, et al. Fabry-Perot Interferometry with FractionalCharges[J]. Phys. Rev. Lett., 2012, 108: 256804.
[188] YANG G. Probing the 𝜈 =52quantum Hall state with electronic Mach-Zehnder interferometry[J]. Phys. Rev. B, 2015, 91: 115109.
[189] SIVAN I, BHATTACHARYYA R, CHOI H K, et al. Interaction-induced interference in theinteger quantum Hall effect[J]. Phys. Rev. B, 2018, 97: 125405.
[190] BHATTACHARYYA R, BANERJEE M, HEIBLUM M, et al. Melting of Interference in theFractional Quantum Hall Effect: Appearance of Neutral Modes[J]. Phys. Rev. Lett., 2019, 122:246801.
[191] KANE C L, FISHER M P A. Quantized thermal transport in the fractional quantum Hall effect[J]. Phys. Rev. B, 1997, 55: 15832-15837.
[192] JEZOUIN S, PARMENTIER F, ANTHORE A, et al. Quantum limit of heat flow across a singleelectronic channel[J]. Science, 2013, 342(6158): 601-604.
[193] SIVRE E, ANTHORE A, PARMENTIER F, et al. Heat Coulomb blockade of one ballisticchannel[J]. Nature Phys., 2018, 14(2): 145-148.
[194] SIMON S H. Interpretation of thermal conductance of the = 5/2 edge[J]. Phys. Rev. B, 2018,97: 121406.
[195] MA K K W, FELDMAN D E. Thermal Equilibration on the Edges of Topological Liquids[J].Phys. Rev. Lett., 2020, 125: 016801.
[196] GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation[J]. Rev. Mod. Phys., 2014, 86:153-185.
[197] ZHONG Y P, XU D, WANG P, et al. Emulating Anyonic Fractional Statistical Behavior in aSuperconducting Quantum Circuit[J]. Phys. Rev. Lett., 2016, 117: 110501.
[198] KITAEV A, PRESKILL J. Topological Entanglement Entropy[J]. Phys. Rev. Lett., 2006, 96:110404.
[199] JIANG H C, WANG Z, BALENTS L. Identifying Topological Order by Entanglement Entropy[J]. Nat. Phys., 2012, 8(12): 902-905.
[200] SATZINGER K, LIU Y J, SMITH A, et al. Realizing topologically ordered states on a quantumprocessor[J]. Science, 2021, 374(6572): 1237-1241.
[201] SEMEGHINI G, LEVINE H, KEESLING A, et al. Probing topological spin liquids on a pro grammable quantum simulator[J]. Science, 2021, 374(6572): 1242-1247.
[202] KAWAGOE K, LEVIN M. Microscopic definitions of anyon data[J]. Phys. Rev. B, 2020, 101:115113.
[203] MOORE G, SEIBERG N. Classical and Quantum Conformal Field Theory[J]. Commun. Math.Phys., 1989, 123(2): 177-254.
[204] KONG L, WEN X G, ZHENG H. Boundary-bulk Relation in Topological Orders[J]. Nucl.Phys. B, 2017, 922: 62 - 76.
[205] KONG L. Anyon Condensation and Tensor Categories[J]. Nucl. Phys. B, 2014, 886: 436 - 482.
[206] LEVIN M. Protected Edge Modes without Symmetry[J]. Phys. Rev. X, 2013, 3(2): 021009.
[207] BARKESHLI M, JIAN C M, QI X L. Classification of Topological Defects in Abelian Topo logical States[J]. Phys. Rev. B, 2013, 88(24): 241103(R).
[208] ETINGOF P, GELAKI S, NIKSHYCH D, et al. Tensor Categories: volume 205[M]. AmericanMathematical Soc., 2016.
[209] NEGREVERGNE C, SOMMA R, ORTIZ G, et al. Liquid-state NMR simulations of quantummany-body problems[J]. Phys. Rev. A, 2005, 71: 032344.
[210] CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy[J]. Proc. Nat. Acad. Sci., 1997, 94(5): 1634-1639.
[211] XIN T, PEDERNALES J S, SOLANO E, et al. Entanglement measures in embedding quantumsimulators with nuclear spins[J]. Phys. Rev. A, 2018, 97(2): 022322.
[212] AHARONOV Y, BOHM D. Significance of Electromagnetic Potentials in the Quantum Theory[J]. Phys. Rev., 1959, 115: 485-491.
[213] WEN X G. Quantum Orders in an Exact Soluble Model[J]. Phys. Rev. Lett., 2003, 90: 016803.
[214] KONG L, ZHENG H. A mathematical theory of gapless edges of 2d topological orders. Part I[J]. J. High Energy Phys., 2020, 2020(2): 1-62.
[215] KONG L, ZHENG H. A mathematical theory of gapless edges of 2d topological orders. Part II[J]. Nucl. Phys. B, 2021, 966: 115384.
[216] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface Codes: Towards PracticalLarge-scale Quantum Computation[J]. Phys. Rev. A, 2012, 86: 032324.
[217] CONG I, CHENG M, WANG Z. Universal Quantum Computation with Gapped Boundaries[J].Phys. Rev. Lett., 2017, 119: 170504.
[218] CONG I, CHENG M, WANG Z. Topological quantum computation with gapped boundaries[A]. 2016.
[219] FANG C, GILBERT M J, BERNEVIG B A. Bulk topological invariants in noninteracting pointgroup symmetric insulators[J]. Phys. Rev. B, 2012, 86: 115112.
[220] FU L. Topological Crystalline Insulators[J]. Phys. Rev. Lett., 2011, 106: 106802.
[221] ANDO Y, FU L. Topological Crystalline Insulators and Topological Superconductors: FromConcepts to Materials[J]. Annual Review of Condensed Matter Physics, 2015, 6(1): 361-381.
[222] SHENG D N, WENG Z Y, SHENG L, et al. Quantum Spin-Hall Effect and TopologicallyInvariant Chern Numbers[J]. Phys. Rev. Lett., 2006, 97: 036808.
[223] SHIOZAKI K, SATO M. Topology of crystalline insulators and superconductors[J]. Phys. Rev.B, 2014, 90: 165114.
[224] DONG X Y, LIU C X. Classification of topological crystalline insulators based on representationtheory[J]. Phys. Rev. B, 2016, 93: 045429.
[225] YU X L, JIANG L, QUAN Y M, et al. Topological phase transitions, Majorana modes, andquantum simulation of the Su–Schrieffer–Heeger model with nearest-neighbor interactions[J].Phys. Rev. B, 2020, 101: 045422.
[226] SU W P, SCHRIEFFER J R, HEEGER A J. Soliton excitations in polyacetylene[J]. Phys. Rev.B, 1980, 22: 2099-2111.
[227] HIRSCH J E. Effect of Coulomb Interactions on the Peierls Instability[J]. Phys. Rev. Lett.,1983, 51: 296-299.
[228] VOIT J. Superconductivity in models of conducting polymers[J]. Phys. Rev. Lett., 1990, 64:323-325.
[229] Mean-field approach to extended Su–Schrieffer–Heeger models[J]. Chem. Phys. Lett., 2003,377(3): 455-461.
[230] MIYAO T. Ground state properties of the SSH model[J]. Journal of statistical physics, 2012,149: 519-550.
[231] STICLET D, SEABRA L, POLLMANN F, et al. From fractionally charged solitons to Majoranabound states in a one-dimensional interacting model[J]. Phys. Rev. B, 2014, 89: 115430.
[232] SIRKER J, MAITI M, KONSTANTINIDIS N, et al. Boundary fidelity and entanglement in thesymmetry protected topological phase of the SSH model[J]. J. Stat. Mech. Theory Exp., 2014,2014(10): P10032.
[233] WEBER M, ASSAAD F F, HOHENADLER M. Excitation spectra and correlation functionsof quantum Su-Schrieffer-Heeger models[J]. Phys. Rev. B, 2015, 91: 245147.
[234] MEIER E J, AN F A, GADWAY B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model[J]. Nat. Commun., 2016, 7(1): 13986.
[235] LEE C H, IMHOF S, BERGER C, et al. Topolectrical circuits[J]. Commun. Phys., 2018, 1(1):39.
[236] CAI W, HAN J, MEI F, et al. Observation of Topological Magnon Insulator States in a Super conducting Circuit[J]. Phys. Rev. Lett., 2019, 123: 080501.
[237] EZAWA M. Exact solutions and topological phase diagram in interacting dimerized Kitaevtopological superconductors[J]. Phys. Rev. B, 2017, 96: 121105.
[238] BARBIERO L, SANTOS L, GOLDMAN N. Quenched dynamics and spin-charge separationin an interacting topological lattice[J]. Phys. Rev. B, 2018, 97: 201115.
[239] WANG Y, MIAO J J, JIN H K, et al. Characterization of topological phases of dimerized Kitaevchain via edge correlation functions[J]. Phys. Rev. B, 2017, 96: 205428.
[240] DE LéSéLEUC S, LIENHARD V, SCHOLL P, et al. Observation of a symmetry-protectedtopological phase of interacting bosons with Rydberg atoms[J]. Science, 2019, 365(6455):775-780.
[241] ATALA M, AIDELSBURGER M, BARREIRO J T, et al. Direct measurement of the Zak phasein topological Bloch bands[J]. Nature Phys., 2013, 9(12): 795-800.
[242] MURTA B, CATARINA G, FERNÁNDEZ-ROSSIER J. Berry phase estimation in gate-basedadiabatic quantum simulation[J]. Phys. Rev. A, 2020, 101: 020302.
[243] ST-JEAN P, GOBLOT V, GALOPIN E, et al. Lasing in topological edge states of a one dimensional lattice[J]. Nature Photon., 2017, 11(10): 651-656.
[244] CHAUNSALI R, KIM E, THAKKAR A, et al. Demonstrating an In Situ Topological BandTransition in Cylindrical Granular Chains[J]. Phys. Rev. Lett., 2017, 119: 024301.
[245] ZHANG Z, LONG H, LIU C, et al. Deep-subwavelength holey acoustic second-order topolog ical insulators[J]. Advanced Materials, 2019, 31(49): 1904682.
[246] OLEKHNO N A, ROZENBLIT A D, KACHIN V I, et al. Experimental realization of topologi cal corner states in long-range-coupled electrical circuits[J]. Phys. Rev. B, 2022, 105: L081107.
[247] CHEN X D, DENG W M, SHI F L, et al. Direct Observation of Corner States in Second-OrderTopological Photonic Crystal Slabs[J]. Phys. Rev. Lett., 2019, 122: 233902.
[248] ZAK J. Berry’s phase for energy bands in solids[J]. Phys. Rev. Lett., 1989, 62: 2747-2750.
[249] RICE M J, MELE E J. Elementary Excitations of a Linearly Conjugated Diatomic Polymer[J].Phys. Rev. Lett., 1982, 49: 1455-1459.
[250] LONGHI S. Zak phase of photons in optical waveguide lattices[J]. Optics letters, 2013, 38(19):3716-3719.
[251] TAN W, SUN Y, CHEN H, et al. Photonic simulation of topological excitations in metamaterials[J]. Sci. Rep., 2014, 4(1): 3842.
[252] CARDANO F, D’ERRICO A, DAUPHIN A, et al. Detection of Zak phases and topologicalinvariants in a chiral quantum walk of twisted photons[J]. Nat. Commun., 2017, 8(1): 15516.
[253] XIAO M, MA G, YANG Z, et al. Geometric phase and band inversion in periodic acousticsystems[J]. Nature Phys., 2015, 11(3): 240-244.
[254] YANG Z, GAO F, ZHANG B. Topological water wave states in a one-dimensional structure[J].Sci. Rep., 2016, 6(1): 29202.
[255] KING-SMITH R D, VANDERBILT D. Theory of polarization of crystalline solids[J]. Phys.Rev. B, 1993, 47: 1651-1654.
[256] RESTA R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach[J]. Rev. Mod. Phys., 1994, 66: 899-915.
[257] DERZHKO O, RICHTER J, MAKSYMENKO M. Strongly correlated flat-band systems: Theroute from Heisenberg spins to Hubbard electrons[J]. Int. J. Mod. Phys. B, 2015, 29(12):1530007.
[258] LEYKAM D, ANDREANOV A, FLACH S. Artificial flat band systems: from lattice modelsto experiments[J]. Adv. Phys.: X, 2018, 3(1): 1473052.
[259] MAIMAITI W, ANDREANOV A, FLACH S. Flat-band generator in two dimensions[J]. Phys.Rev. B, 2021, 103: 165116.
[260] LIEB E H. Two theorems on the Hubbard model[J]. Phys. Rev. Lett., 1989, 62: 1201-1204.
[261] BISTRITZER R, MACDONALD A H. Moiré bands in twisted double-layer graphene[J]. Proc.Nat. Acad. Sci., 2011, 108(30): 12233-12237.
[262] HEIKKILÄ T T, VOLOVIK G E. Flat bands as a route to high-temperature superconductivityin graphite[J]. Basic Physics of Functionalized Graphite, 2016: 123-143.
[263] HEIKKILÄ T T, KOPNIN N B, VOLOVIK G E. Flat bands in topological media[J]. JETPLett., 2011, 94: 233-239.
[264] HYART T, OJAJÄRVI R, HEIKKILÄ T. Two topologically distinct Dirac-line semimetal phasesand topological phase transitions in rhombohedrally stacked honeycomb lattices[J]. J. LowTemp. Phys, 2018, 191: 35-48.
[265] PAL H K, SPITZ S, KINDERMANN M. Emergent geometric frustration and flat band in moirébilayer graphene[J]. Phys. Rev. Lett., 2019, 123(18): 186402.
[266] KHODEL V, SHAGINYAN V. Superfluidity in system with fermion condensate[J]. Jetp Lett,1990, 51(9): 553.
[267] VOLOVIK G. A new class of normal Fermi liquids[J]. JETP Lett, 1991, 53(4): 222.
[268] NOZIÈRES P. Properties of Fermi liquids with a finite range interaction[J]. Journal de PhysiqueI, 1992, 2(4): 443-458.
[269] YUDIN D, HIRSCHMEIER D, HAFERMANN H, et al. Fermi Condensation Near van HoveSingularities Within the Hubbard Model on the Triangular Lattice[J]. Phys. Rev. Lett., 2014,112: 070403.
[270] VOLOVIK G. The fermi condensate near the saddle point and in the vortex core[J]. JETP Lett.,1994, 59(11): 830.
[271] SHASHKIN A A, DOLGOPOLOV V T, CLARK J W, et al. Merging of Landau Levels in aStrongly Interacting Two-Dimensional Electron System in Silicon[J]. Phys. Rev. Lett., 2014,112: 186402.
[272] TOVMASYAN M, PEOTTA S, LIANG L, et al. Preformed pairs in flat Bloch bands[J]. Phys.Rev. B, 2018, 98: 134513.
[273] DANIELI C, ANDREANOV A, FLACH S. Many-body flatband localization[J]. Phys. Rev. B,2020, 102: 041116.
[274] KUNO Y, ORITO T, ICHINOSE I. Flat-band many-body localization and ergodicity breakingin the Creutz ladder[J]. New. J. Phys., 2020, 22(1): 013032.
[275] ORITO T, KUNO Y, ICHINOSE I. Exact projector Hamiltonian, local integrals of motion, andmany-body localization with symmetry-protected topological order[J]. Phys. Rev. B, 2020, 101:224308.
[276] MIELKE A. Ferromagnetism in the Hubbard model on line graphs and further considerations[J]. Journal of Physics A: Mathematical and General, 1991, 24(14): 3311.
[277] TASAKI H. Ferromagnetism in the Hubbard models with degenerate single-electron groundstates[J]. Phys. Rev. Lett., 1992, 69: 1608-1611.
[278] MIELKE A. Ferromagnetic ground states for the Hubbard model on line graphs[J]. Journal ofPhysics A: Mathematical and General, 1991, 24(2): L73.
[279] TASAKI H. Hubbard model and the origin of ferromagnetism[J]. The European PhysicalJournal B, 2008, 64: 365-372.
[280] TASAKI H. Stability of Ferromagnetism in the Hubbard Model[J]. Phys. Rev. Lett., 1994, 73:1158-1161.
[281] MAKSYMENKO M, HONECKER A, MOESSNER R, et al. Flat-Band Ferromagnetism as aPauli-Correlated Percolation Problem[J]. Phys. Rev. Lett., 2012, 109: 096404.
[282] PEOTTA S, TÖRMÄ P. Superfluidity in topologically nontrivial flat bands[J]. Nat. Commun.,2015, 6(1): 8944.
[283] JULKU A, PEOTTA S, VANHALA T I, et al. Geometric Origin of Superfluidity in the Lieb Lattice Flat Band[J]. Phys. Rev. Lett., 2016, 117: 045303.
[284] MONDAINI R, BATROUNI G G, GRÉMAUD B. Pairing and superconductivity in the flatband: Creutz lattice[J]. Phys. Rev. B, 2018, 98: 155142.
[285] VOLOVIK G E. Graphite, graphene, and the flat band superconductivity[J]. JETP Lett., 2018,107: 516-517.
[286] MIELKE A. Pair formation of hard core bosons in flat band systems[J]. Journal of StatisticalPhysics, 2018, 171: 679-695.
[287] CAPRIOTTI L, SORELLA S. Spontaneous Plaquette Dimerization in the J1 − −J2 HeisenbergModel[J]. Phys. Rev. Lett., 2000, 84: 3173-3176.
[288] MOSADEQ H, SHAHBAZI F, JAFARI S. Plaquette valence bond ordering in a J1–J2 Heisen berg antiferromagnet on a honeycomb lattice[J]. J. Phys. Condens., 2011, 23(22): 226006.
[289] HUGHES T L, PRODAN E, BERNEVIG B A. Inversion-symmetric topological insulators[J].Phys. Rev. B, 2011, 83: 245132.
[290] JIAO Z Q, LONGHI S, WANG X W, et al. Experimentally Detecting Quantized Zak Phaseswithout Chiral Symmetry in Photonic Lattices[J]. Phys. Rev. Lett., 2021, 127: 147401.
[291] PÉREZ-GONZÁLEZ B, BELLO M, GÓMEZ-LEÓN A, et al. Interplay between long-rangehopping and disorder in topological systems[J]. Phys. Rev. B, 2019, 99: 035146.
[292] ALICEA J. New directions in the pursuit of Majorana fermions in solid state systems[J]. Reportson progress in physics, 2012, 75(7): 076501.
[293] BEENAKKER C. Search for Majorana fermions in superconductors[J]. Annu. Rev. Condens.Matter Phys., 2013, 4(1): 113-136.
[294] STANESCU T D, TEWARI S. Majorana fermions in semiconductor nanowires: fundamentals,modeling, and experiment[J]. J. Phys. Condens., 2013, 25(23): 233201.
[295] ELLIOTT S R, FRANZ M. Colloquium: Majorana fermions in nuclear, particle, and solid-statephysics[J]. Rev. Mod. Phys., 2015, 87(1): 137.
[296] DENG M, VAITIEKĖNAS S, HANSEN E B, et al. Majorana bound state in a coupled quantum dot hybrid-nanowire system[J]. Science, 2016, 354(6319): 1557-1562.
[297] ZHANG H, GÜL Ö, CONESA-BOJ S, et al. Ballistic superconductivity in semiconductornanowires[J]. Nat. Commun., 2017, 8(1): 16025.
[298] GRIVNIN A, BOR E, HEIBLUM M, et al. Concomitant opening of a bulk-gap with an emergingpossible Majorana zero mode[J]. Nat. Commun., 2019, 10(1): 1940.
[299] DE MOOR M W, BOMMER J D, XU D, et al. Electric field tunable superconductor semiconductor coupling in Majorana nanowires[J]. New. J. Phys., 2018, 20(10): 103049.
[300] BOMMER J D, ZHANG H, GÜL Ö, et al. Spin-orbit protection of induced superconductivityin Majorana nanowires[J]. Phys. Rev. Lett., 2019, 122(18): 187702.
[301] ZHANG H, LIU D E, WIMMER M, et al. Next steps of quantum transport in Majorana nanowiredevices[J]. Nat. Commun., 2019, 10(1): 5128.
[302] HE Q L, PAN L, STERN A L, et al. Chiral Majorana fermion modes in a quantum anomalousHall insulator–superconductor structure[J]. Science, 2017, 357(6348): 294-299.
[303] LUTCHYN R M, SAU J D, SARMA S D. Majorana fermions and a topological phase transitionin semiconductor-superconductor heterostructures[J]. Phys. Rev. Lett., 2010, 105(7): 077001.
[304] OREG Y, REFAEL G, VON OPPEN F. Helical liquids and Majorana bound states in quantumwires[J]. Phys. Rev. Lett., 2010, 105(17): 177002.
[305] QI X L, HUGHES T L, ZHANG S C. Chiral topological superconductor from the quantum Hall state[J]. Phys. Rev. B, 2010, 82(18): 184516.
[306] WANG J, ZHOU Q, LIAN B, et al. Chiral topological superconductor and half-integer conduc tance plateau from quantum anomalous Hall plateau transition[J]. Phys. Rev. B, 2015, 92(6): 064520.
[307] PRADA E, SAN-JOSE P, DE MOOR M W, et al. From Andreev to Majorana bound states inhybrid superconductor–semiconductor nanowires[J]. Nat. Rev. Phys., 2020, 2(10): 575-594.
[308] PAN H, SAU J D, SARMA S D. Three-terminal nonlocal conductance in Majorana nanowires:Distinguishing topological and trivial in realistic systems with disorder and inhomogeneouspotential[J]. Phys. Rev. B, 2021, 103(1): 014513.
[309] LAI Y H, SAU J D, SARMA S D. Presence versus absence of end-to-end nonlocal conductancecorrelations in Majorana nanowires: Majorana bound states versus Andreev bound states[J].Phys. Rev. B, 2019, 100(4): 045302.
[310] PAN H, SARMA S D. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires[J]. Phys. Rev. Res., 2020, 2(1): 013377.
[311] LIU C X, SAU J D, SARMA S D. Distinguishing topological Majorana bound states from trivialAndreev bound states: Proposed tests through differential tunneling conductance spectroscopy[J]. Phys. Rev. B, 2018, 97(21): 214502.
[312] JI W, WEN X G. 1 2 (e 2/h) conductance plateau without 1d chiral majorana fermions[J]. Phys.Rev. Lett., 2018, 120(10): 107002.
[313] HUANG Y, SETIAWAN F, SAU J D. Disorder-induced half-integer quantized conductance plateau in quantum anomalous Hall insulator-superconductor structures[J]. Phys. Rev. B, 2018, 97(10): 100501.
[314] KAYYALHA M, XIAO D, ZHANG R, et al. Absence of evidence for chiral Majorana modesin quantum anomalous Hall-superconductor devices[J]. Science, 2020, 367(6473): 64-67.
[315] CHIU C K, TEO J C, SCHNYDER A P, et al. Classification of topological quantum matter with symmetries[J]. Rev. Mod. Phys., 2016, 88(3): 035005.
[316] HE J J, WU J, CHOY T P, et al. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors[J]. Nat. Commun., 2014, 5(1): 3232.
[317] DATTA S. Electronic transport in mesoscopic systems[M]. Cambridge university press, 1997.
[318] SANCHO M L, SANCHO J L, SANCHO J L, et al. Highly convergent schemes for the calcu lation of bulk and surface Green functions[J]. J. Phys. F, 1985, 15(4): 851.
[319] FISHER D S, LEE P A. Relation between conductivity and transmission matrix[J]. Phys. Rev. B, 1981, 23(12): 6851.
[320] LAW K T, LEE P A, NG T K. Majorana fermion induced resonant Andreev reflection[J]. Phys. Rev. Lett., 2009, 103(23): 237001.
[321] HECHT E. Optics[M]. Pearson Education India, 2012.
[322] SARMA S D, SAU J D, STANESCU T D. Splitting of the zero-bias conductance peak as smok ing gun evidence for the existence of the Majorana mode in a superconductor-semiconductor nanowire[J]. Phys. Rev. B, 2012, 86(22): 220506
修改评论