中文版 | English
题名

RankSearch: An Automatic Rank Search Towards Optimal Tensor Compression for Video LSTM Networks on Edge

作者
DOI
发表日期
2023
会议名称
Design, Automation and Test in Europe Conference and Exhibition (DATE)
ISSN
1530-1591
ISBN
979-8-3503-9624-9
会议录名称
卷号
2023-April
页码
1-2
会议日期
17-19 April 2023
会议地点
Antwerp, Belgium
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Various industrial and domestic applications call for optimized lightweight video LSTM network models on edge. The recent tensor-train method can transform space-time features into tensors, which can be further decomposed into low-rank network models for lightweight video analysis on edge. The rank selection of tensor is however manually performed with no optimization. This paper formulates a rank search algorithm to automatically decide tensor ranks with consideration of the trade-off between network accuracy and complexity. A fast rank search method, called RankSearch, is developed to find optimized low-rank video LSTM network models on edge. Results from experiments show that RankSearch achieves a 4.84x reduction in model complexity, and 1.96x speed-up in run time while delivering a 3.86% accuracy improvement compared with the manual-ranked models.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Hardware & Architecture ; Engineering, Industrial
WOS记录号
WOS:001027444200163
EI入藏号
20232614287775
EI主题词
Complex networks ; Economic and social effects ; Edge computing ; Long short-term memory
EI分类号
Computer Systems and Equipment:722 ; Digital Computers and Systems:722.4 ; Algebra:921.1 ; Social Sciences:971
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10137115
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/548909
专题南方科技大学
作者单位
1.Georgia Institute of Technology
2.University of California, Los Angeles
3.Southern University of Science and Technology
4.The University of Hong Kong
5.Shanghai Jiao Tong University
推荐引用方式
GB/T 7714
Changhai Man,Cheng Chang,Chenchen Ding,et al. RankSearch: An Automatic Rank Search Towards Optimal Tensor Compression for Video LSTM Networks on Edge[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-2.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Changhai Man]的文章
[Cheng Chang]的文章
[Chenchen Ding]的文章
百度学术
百度学术中相似的文章
[Changhai Man]的文章
[Cheng Chang]的文章
[Chenchen Ding]的文章
必应学术
必应学术中相似的文章
[Changhai Man]的文章
[Cheng Chang]的文章
[Chenchen Ding]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。