题名 | RankSearch: An Automatic Rank Search Towards Optimal Tensor Compression for Video LSTM Networks on Edge |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | Design, Automation and Test in Europe Conference and Exhibition (DATE)
|
ISSN | 1530-1591
|
ISBN | 979-8-3503-9624-9
|
会议录名称 | |
卷号 | 2023-April
|
页码 | 1-2
|
会议日期 | 17-19 April 2023
|
会议地点 | Antwerp, Belgium
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Various industrial and domestic applications call for optimized lightweight video LSTM network models on edge. The recent tensor-train method can transform space-time features into tensors, which can be further decomposed into low-rank network models for lightweight video analysis on edge. The rank selection of tensor is however manually performed with no optimization. This paper formulates a rank search algorithm to automatically decide tensor ranks with consideration of the trade-off between network accuracy and complexity. A fast rank search method, called RankSearch, is developed to find optimized low-rank video LSTM network models on edge. Results from experiments show that RankSearch achieves a 4.84x reduction in model complexity, and 1.96x speed-up in run time while delivering a 3.86% accuracy improvement compared with the manual-ranked models. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
|
WOS类目 | Automation & Control Systems
; Computer Science, Hardware & Architecture
; Engineering, Industrial
|
WOS记录号 | WOS:001027444200163
|
EI入藏号 | 20232614287775
|
EI主题词 | Complex networks
; Economic and social effects
; Edge computing
; Long short-term memory
|
EI分类号 | Computer Systems and Equipment:722
; Digital Computers and Systems:722.4
; Algebra:921.1
; Social Sciences:971
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10137115 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/548909 |
专题 | 南方科技大学 |
作者单位 | 1.Georgia Institute of Technology 2.University of California, Los Angeles 3.Southern University of Science and Technology 4.The University of Hong Kong 5.Shanghai Jiao Tong University |
推荐引用方式 GB/T 7714 |
Changhai Man,Cheng Chang,Chenchen Ding,et al. RankSearch: An Automatic Rank Search Towards Optimal Tensor Compression for Video LSTM Networks on Edge[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-2.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论