题名 | Benchmark of Physiological Model Based and Deep Learning Based Remote Photoplethysmography in Automotive Applications |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 1520-6149
|
ISBN | 978-1-7281-6328-4
|
会议录名称 | |
卷号 | 2023-June
|
页码 | 1-5
|
会议日期 | 4-10 June 2023
|
会议地点 | Rhodes Island, Greece
|
摘要 | Remote photoplethysmography (rPPG) can be used to monitor driver’s cardio-respiratory functions in automotive for improving the safety of driving. To understand the challenges of rPPG in this application, we created a benchmark of latest rPPG algorithms based on the MR-NIRP Car dataset, selecting the representative methods from both the physiological model based (PBV and DIS) and deep learning based (Supervised Learning and Contrastive Learning) approaches. The experimental results show that the physiological model based methods are generally more robust in this challenging scenario with vigorous motions and dynamic lighting changes, typically DIS outperforms others, with an average MAE of 6.5 bpm on RGB videos and 15.9 bpm on NIR videos. The benchmark indicates that upgrading the single wavelength NIR setup to multi-wavelength is the essential step towards robust heart-rate monitoring in automotive. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20234715105316
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10095078 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/548959 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, China 2.Hefei University of Technology, China 3.The Third People’s Hospital of Shenzhen, China 4.Shandong University of Science and Technology, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhiyu Wang,Xuezhi Yang,Hongzhou Lu,et al. Benchmark of Physiological Model Based and Deep Learning Based Remote Photoplethysmography in Automotive Applications[C],2023:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论