中文版 | English
题名

Prototype Knowledge Distillation for Medical Segmentation with Missing Modality

作者
DOI
发表日期
2023
ISSN
1520-6149
ISBN
978-1-7281-6328-4
会议录名称
卷号
2023-June
页码
1-5
会议日期
4-10 June 2023
会议地点
Rhodes Island, Greece
摘要
Multi-modality medical imaging is crucial in clinical treatment as it can provide complementary information for medical image segmentation. However, collecting multi-modal data in clinical is difficult due to the limitation of the scan time and other clinical situations. As such, it is clinically meaningful to develop an image segmentation paradigm to handle this missing modality problem. In this paper, we propose a prototype knowledge distillation (ProtoKD) method to tackle the challenging problem, especially for the toughest scenario when only single modal data can be accessed. Specifically, our ProtoKD can not only distillate the pixel-wise knowledge of multi-modality data to single-modality data but also transfer intra-class and inter-class feature variations, such that the student model could learn more robust feature representation from the teacher model and inference with only one single modality data. Our method achieves state-of-the-art performance on BraTS benchmark.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20234715104852
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10095014
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/548970
专题南方科技大学
作者单位
1.Tsinghua University
2.The Hong Kong Polytechnic University
3.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Shuai Wang,Zipei Yan,Daoan Zhang,et al. Prototype Knowledge Distillation for Medical Segmentation with Missing Modality[C],2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shuai Wang]的文章
[Zipei Yan]的文章
[Daoan Zhang]的文章
百度学术
百度学术中相似的文章
[Shuai Wang]的文章
[Zipei Yan]的文章
[Daoan Zhang]的文章
必应学术
必应学术中相似的文章
[Shuai Wang]的文章
[Zipei Yan]的文章
[Daoan Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。