中文版 | English
题名

RISC-V based Fully-Parallel SRAM Computing-in-Memory Accelerator with High Hardware Utilization and Data Reuse Rate

作者
DOI
发表日期
2023
ISSN
2834-9830
ISBN
979-8-3503-3268-1
会议录名称
页码
1-5
会议日期
11-13 June 2023
会议地点
Hangzhou, China
摘要
Computing-In-memory (CIM) accelerators have the characteristics of storage and computing integration, which can effectively improve the computing efficiency of the convolutional neural network (CNN). To improve throughput and computational energy efficiency while maintaining accuracy, this paper proposes an SRAM CIM accelerator with the capacitor-coupling method. Charge-domain based accumulation scheme can reduce the impact of multiplication and accumulation (MAC) unit variations, which makes it possible to increase computational throughput and energy efficiency in a fully-parallel manner. Furthermore, the array size and the mapping of weights are designed to improve the utilization by considering the network characteristics and data volume. At the data flow level, this paper proposes a novel data reuse scheme to make full use of the input data. Besides, design-specific custom instructions based on RISC-V are designed to improve data transfer efficiency. Simulation results show that the proposed SRAM-based accelerator can achieve energy efficiency of 284.7, 71.2, and 17.8 TOPS/W at 2-bit, 4-bit, and 8-bit modes in 28-nm CMOS.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20233114469024
EI主题词
Computational efficiency ; Convolutional neural networks ; Data transfer ; Energy efficiency
EI分类号
Energy Conservation:525.2 ; Data Storage, Equipment and Techniques:722.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10168630
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/548971
专题南方科技大学
作者单位
Southern University of Science and Technology, Shenzhen, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Haoxiang Zhou,Haiqiao Hong,Dingbang Liu,et al. RISC-V based Fully-Parallel SRAM Computing-in-Memory Accelerator with High Hardware Utilization and Data Reuse Rate[C],2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Haoxiang Zhou]的文章
[Haiqiao Hong]的文章
[Dingbang Liu]的文章
百度学术
百度学术中相似的文章
[Haoxiang Zhou]的文章
[Haiqiao Hong]的文章
[Dingbang Liu]的文章
必应学术
必应学术中相似的文章
[Haoxiang Zhou]的文章
[Haiqiao Hong]的文章
[Dingbang Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。