题名 | Combining Scene Coordinate Regression and Absolute Pose Regression for Visual Relocalization |
作者 | |
DOI | |
发表日期 | 2023-05-29
|
会议名称 | IEEE International Conference on Robotics and Automation (ICRA)
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 979-8-3503-2366-5
|
会议录名称 | |
卷号 | 2023-May
|
页码 | 11749-11755
|
会议日期 | 29 May-2 June 2023
|
会议地点 | London, United Kingdom
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Visual relocalization is a fundamental problem in computer vision and robotics. Recently, regression-based methods become popular and they can be categorized into two classes: absolute pose regression and scene coordinate regression. In this work, we present a combined regression network that jointly learns scene coordinate regression and absolute pose regression for single-image visual relocalization. The proposed network composes of a feature encoder and two regression branches with uncertainty modeling. In particular, we design a deep feature conditioning module, aiming at propagating the coarse pose information in absolute pose regression to inform the predictions in scene coordinate regression. The proposed network is trained in an end-to-end fashion to learn both regression tasks. Moreover, we propose an uncertainty-driven RANSAC algorithm that incorporates the predicted scene coordinates and their uncertainties to solve the camera pose during inference. To the best of our knowledge, this work is the first to combine scene coordinate regression and pose regression in a hierarchical framework for visual relocalization. Experiments on indoor and outdoor benchmarks demonstrate the effectiveness and the superiority of the proposed method over the state-of-the-art methods. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Pearl River Talent Recruitment Program[2019QN01X761]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:001048371103121
|
EI入藏号 | 20233514632979
|
EI主题词 | Inference engines
; Regression analysis
; Uncertainty analysis
|
EI分类号 | Expert Systems:723.4.1
; Computer Applications:723.5
; Vision:741.2
; Probability Theory:922.1
; Mathematical Statistics:922.2
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10160317 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/548988 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China 2.Department of Electrical and Electronic Engineering, Shenzhen Key - Laboratory of Robotics and Computer Vision, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Jiahao Ruan,Li He,Yisheng Guan,et al. Combining Scene Coordinate Regression and Absolute Pose Regression for Visual Relocalization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:11749-11755.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论