中文版 | English
题名

Temporal Decomposition Transformer for Probabilistic Energy Forecasting

作者
DOI
发表日期
2023
ISBN
978-1-6654-5216-8
会议录名称
页码
1-5
会议日期
14-15 Jan. 2023
会议地点
Shenyang, China
摘要
To ensure the balance of power supply and demand, probabilistic energy forecasting is significant to determine the power generation and dispatch strategies. In order to solve the probabilistic forecasting problem of energy time series, we develop a novel transformer-based decomposition framework, i.e., the temporal decomposition transformer (TDT) to estimate the probability distribution of future time series. TDT achieves accurate and reliable probabilistic forecasting by predicting the mean and standard deviation of time series successively through the decomposition framework. TDT uses the tranformer decoder to capture the temporal feature in the historical time series, and then two tranformer decoders predict the mean and standard deviation of the time series at each future time instant respectively, where the standard deviation is forecasted based on the forecasting of the mean. Finally, the time series probabilistic distribution is modeled by log-likelihood regression. By accomplishing extensive experiments on two real-world energy time series datasets, we conclude that TDT achieves better forecasting accuracy in both point forecasting and probability energy forecasting than compared methods.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20233214486333
EI主题词
Decoding ; Economics ; Electric load dispatching ; Forecasting ; Probability distributions
EI分类号
Electric Power Transmission:706.1.1 ; Data Processing and Image Processing:723.2 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Social Sciences:971
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10175223
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/548992
专题工学院_机械与能源工程系
作者单位
1.School of Automation Guangdong University of Technology, Guangzhou, China
2.School of Systems Science Beijing Normal University, Beijing, China
3.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Jiarui Ye,Bo Zhao,Derong Liu. Temporal Decomposition Transformer for Probabilistic Energy Forecasting[C],2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiarui Ye]的文章
[Bo Zhao]的文章
[Derong Liu]的文章
百度学术
百度学术中相似的文章
[Jiarui Ye]的文章
[Bo Zhao]的文章
[Derong Liu]的文章
必应学术
必应学术中相似的文章
[Jiarui Ye]的文章
[Bo Zhao]的文章
[Derong Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。