题名 | Bidirectional Generalised Rigid Point Set Registration |
作者 | |
DOI | |
发表日期 | 2023-05-29
|
会议名称 | IEEE International Conference on Robotics and Automation (ICRA)
|
ISSN | 1050-4729
|
EISSN | 2577-087X
|
ISBN | 979-8-3503-2366-5
|
会议录名称 | |
卷号 | 2023-May
|
页码 | 6873-6879
|
会议日期 | 29 May-2 June 2023
|
会议地点 | London, United Kingdom
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In medical robotics and image-guided surgery (IGS), registration is needed in order to align together the coordinate frames of robots, medical imaging modalities, surgical tools, and patients. Existing registration algorithms often assume one point set to be a noise-free model while the other to contain noise and outliers. However, in real scenarios, noise and outliers can exist in both point sets to be registered. To eliminate the above-mentioned challenge, in this paper, we formally formulate the Bi-directional Generalised Rigid Point Set Registration (Bi-GRPSR) problem where normal vectors are adopted, bi-directional probability density function (PDFs) and Hybrid Mixture Models (HMMs) are constructed to derive the objective function. Bi-GRPSR considering anisotropic positional noise is thus cast as a maximum likelihood estimation (MLE) problem, which is solved by the proposed Bi-directional Generalised Anisotropic Coherent Point Drift (Bi-AGCPD) where spatially nearby points are considered to move coherently and iterative expectation maximization (EM) steps are involved. Experimental results on two human bone point sets, under different settings of noise, outliers, and overlapping ratios, validate the effectiveness and improvements of Bi-AGCPD over existing probabilistic and learning-based methods. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Key R&D program of China[2019YFB1312400]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:001036713005046
|
EI入藏号 | 20233514632673
|
EI主题词 | Anisotropy
; Geometry
; Iterative methods
; Maximum principle
; Medical imaging
; Probability density function
; Robotic surgery
; Statistics
; Surgical equipment
|
EI分类号 | Biomedical Engineering:461.1
; Medicine and Pharmacology:461.6
; Biomedical Equipment, General:462.1
; Robot Applications:731.6
; Imaging Techniques:746
; Mathematics:921
; Numerical Methods:921.6
; Statistical Methods:922
; Probability Theory:922.1
; Mathematical Statistics:922.2
; Physical Properties of Gases, Liquids and Solids:931.2
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10160361 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/548995 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electronic Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China 2.School of Control Science and Engineering, Shandong University, China 3.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Ang Zhang,Zhe Min,Li Liu,et al. Bidirectional Generalised Rigid Point Set Registration[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:6873-6879.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论