中文版 | English
题名

Bidirectional Generalised Rigid Point Set Registration

作者
DOI
发表日期
2023-05-29
会议名称
IEEE International Conference on Robotics and Automation (ICRA)
ISSN
1050-4729
EISSN
2577-087X
ISBN
979-8-3503-2366-5
会议录名称
卷号
2023-May
页码
6873-6879
会议日期
29 May-2 June 2023
会议地点
London, United Kingdom
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In medical robotics and image-guided surgery (IGS), registration is needed in order to align together the coordinate frames of robots, medical imaging modalities, surgical tools, and patients. Existing registration algorithms often assume one point set to be a noise-free model while the other to contain noise and outliers. However, in real scenarios, noise and outliers can exist in both point sets to be registered. To eliminate the above-mentioned challenge, in this paper, we formally formulate the Bi-directional Generalised Rigid Point Set Registration (Bi-GRPSR) problem where normal vectors are adopted, bi-directional probability density function (PDFs) and Hybrid Mixture Models (HMMs) are constructed to derive the objective function. Bi-GRPSR considering anisotropic positional noise is thus cast as a maximum likelihood estimation (MLE) problem, which is solved by the proposed Bi-directional Generalised Anisotropic Coherent Point Drift (Bi-AGCPD) where spatially nearby points are considered to move coherently and iterative expectation maximization (EM) steps are involved. Experimental results on two human bone point sets, under different settings of noise, outliers, and overlapping ratios, validate the effectiveness and improvements of Bi-AGCPD over existing probabilistic and learning-based methods.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key R&D program of China[2019YFB1312400]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:001036713005046
EI入藏号
20233514632673
EI主题词
Anisotropy ; Geometry ; Iterative methods ; Maximum principle ; Medical imaging ; Probability density function ; Robotic surgery ; Statistics ; Surgical equipment
EI分类号
Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Biomedical Equipment, General:462.1 ; Robot Applications:731.6 ; Imaging Techniques:746 ; Mathematics:921 ; Numerical Methods:921.6 ; Statistical Methods:922 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Physical Properties of Gases, Liquids and Solids:931.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10160361
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/548995
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering, The Chinese University of Hong Kong, N.T., Hong Kong SAR, China
2.School of Control Science and Engineering, Shandong University, China
3.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Ang Zhang,Zhe Min,Li Liu,et al. Bidirectional Generalised Rigid Point Set Registration[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:6873-6879.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ang Zhang]的文章
[Zhe Min]的文章
[Li Liu]的文章
百度学术
百度学术中相似的文章
[Ang Zhang]的文章
[Zhe Min]的文章
[Li Liu]的文章
必应学术
必应学术中相似的文章
[Ang Zhang]的文章
[Zhe Min]的文章
[Li Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。