中文版 | English
题名

Locate before Segment: Topology-guided Retinal Layer Segmentation in Optical Coherence Tomography Images

作者
DOI
发表日期
2023-05-29
会议名称
IEEE International Conference on Robotics and Automation (ICRA)
ISSN
1050-4729
EISSN
2577-087X
ISBN
979-8-3503-2366-5
会议录名称
卷号
2023-May
页码
4775-4781
会议日期
29 May-2 June 2023
会议地点
London, United Kingdom
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Optical Coherence Tomography (OCT) is a non-invasive imaging technique that is instrumental in retinal disease diagnosis and treatment. Segmentation of retinal layers in OCT is an essential step, but remains challenging for common pixel-wise segmentation methods usually fail to obtain the correct layer topology. To tackle this challenge, we propose a novel Locate-to-Segment (L2S) framework to provide a layer region location guidance for pixel-wise labeling learning so as to obtain better segmentation with the correct topology and smooth boundaries. Specifically, a Structured Boundary Regression Network (SBRNet) is devised to first predict the surface positions. For effective learning on normal-size images, we design two regression branches to regress the top surface and eight layer widths separately in SBRNet to locate each layer region with absolutely correct orderings. Then, we take the prediction of SBRNet as an additional input for a common pixel-wise segmentation network to provide the guidance of correct topology. In this L2S manner, our framework takes merits of regression-based methods and pixel-wise labeling-based methods to obtain accurate segmentation with the correct topology and smooth continuous boundaries. Experimental results on a public retinal OCT dataset demonstrate the effectiveness of our method, outperforming state-of-the-art segmentation methods with the highest average Dice score of 90.29% and the lowest average MAD score of 0.782.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key R&D program of China[2019YFB1312400]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:001036713003104
EI入藏号
20233514632962
EI主题词
Diagnosis ; Image segmentation ; Medical imaging ; Ophthalmology ; Pixels ; Topology
EI分类号
Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10160300
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/548996
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
2.Department of Electronic and Electrical Engineering, Shenzhen Key Laboratory of Robotics Perception and Intelligence, Southern University of Science and Technology, Shenzhen, China
3.Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
推荐引用方式
GB/T 7714
Ye Lu,Yutian Shen,Xiaohan Xing,et al. Locate before Segment: Topology-guided Retinal Layer Segmentation in Optical Coherence Tomography Images[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:4775-4781.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ye Lu]的文章
[Yutian Shen]的文章
[Xiaohan Xing]的文章
百度学术
百度学术中相似的文章
[Ye Lu]的文章
[Yutian Shen]的文章
[Xiaohan Xing]的文章
必应学术
必应学术中相似的文章
[Ye Lu]的文章
[Yutian Shen]的文章
[Xiaohan Xing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。