中文版 | English
题名

ADAPT: Action-aware Driving Caption Transformer

作者
DOI
发表日期
2023-05-29
会议名称
IEEE International Conference on Robotics and Automation (ICRA)
ISSN
1050-4729
EISSN
2577-087X
ISBN
979-8-3503-2366-5
会议录名称
卷号
2023-May
页码
7554-7561
会议日期
29 May-2 June 2023
会议地点
London, United Kingdom
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
End-to-end autonomous driving has great potential in the transportation industry. However, the lack of transparency and interpretability of the automatic decision-making process hinders its industrial adoption in practice. There have been some early attempts to use attention maps or cost volume for better model explainability which is difficult for ordinary passengers to understand. To bridge the gap, we propose an end-to-end transformer-based architecture, ADAPT (Action-aware Driving cAPtion Transformer), which provides user-friendly natural language narrations and reasoning for each decision making step of autonomous vehicular control and action. ADAPT jointly trains both the driving caption task and the vehicular control prediction task, through a shared video representation. Experiments on BDD-X (Berkeley DeepDrive eXplanation) dataset demonstrate state-of-the-art performance of the ADAPT framework on both automatic metrics and human evaluation. To illustrate the feasibility of the proposed framework in real-world applications, we build a novel deployable system that takes raw car videos as input and outputs the action narrations and reasoning in real time. The code, models and data are available at https://github.com/jxbbb/ADAPT.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:001048371100078
EI入藏号
20233514632988
EI主题词
Autonomous vehicles
EI分类号
Highway Transportation:432 ; Robot Applications:731.6 ; Management:912.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10160326
引用统计
被引频次[WOS]:16
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/548997
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Chinese Academy of Sciences, Institute of Automation, China
2.Institute for AI Industry Research (AIR), Tsinghua University, China
3.Department of Computer Science and Technology, Tsinghua University, China
4.Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Bu Jin,Xinyu Liu,Yupeng Zheng,et al. ADAPT: Action-aware Driving Caption Transformer[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:7554-7561.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bu Jin]的文章
[Xinyu Liu]的文章
[Yupeng Zheng]的文章
百度学术
百度学术中相似的文章
[Bu Jin]的文章
[Xinyu Liu]的文章
[Yupeng Zheng]的文章
必应学术
必应学术中相似的文章
[Bu Jin]的文章
[Xinyu Liu]的文章
[Yupeng Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。