题名 | Network Learning from Best-Response Dynamics in LQ Games |
作者 | |
通讯作者 | Kemi Ding |
DOI | |
发表日期 | 2023-05-31
|
会议名称 | 2023 2ND CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, CFASTA
|
ISSN | 0743-1619
|
EISSN | 2378-5861
|
ISBN | 978-1-6654-6952-4
|
会议录名称 | |
卷号 | 2023-May
|
页码 | 1680-1685
|
会议日期 | 31 May-2 June 2023
|
会议地点 | San Diego, CA, USA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, we focus on network structure inference problem for linear-quadratic (LQ) games from best-response dynamics. An adversary is considered to have no knowledge of the game network structure but have the ability to observe all players' best-response actions and manipulate some players' actions. This work presents a comprehensive framework for network learning from best-response dynamics in LQ games. First of all, we establish theoretic results that characterize network structure identifiability and provide numerical examples to demonstrate the usefulness of our theoretic results. Next, in the face of the inherent stability and sparsity constraints for the game network structure, we propose an information-theoretic stable and sparse system identification algorithm for learning the network structure. Finally, the effectiveness of the proposed learning algorithm is tested. The connection between network structure inference problem and classical system identification theory is covered by our work, which advances the literature. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Science, Technology and Innovation Commission of ShenzhenMunicipality[ZDSYS20200811143601004]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
|
WOS类目 | Automation & Control Systems
; Computer Science, Interdisciplinary Applications
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:001027160301083
|
EI入藏号 | 20233314564676
|
EI主题词 | Dynamics
; Information Theory
; Religious Buildings
|
EI分类号 | Public Buildings:402.2
; Information Theory And Signal Processing:716.1
; Machine Learning:723.4.2
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10156151 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/548998 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | 1.Australian Centre for Field Robotics, the University of Sydney, Sydney, Australia 2.School of System Design and Intelligent Manufacturing, Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems and the Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China |
通讯作者单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Yijun Chen,Kemi Ding,Guodong Shi. Network Learning from Best-Response Dynamics in LQ Games[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1680-1685.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论