中文版 | English
题名

Network Learning from Best-Response Dynamics in LQ Games

作者
通讯作者Kemi Ding
DOI
发表日期
2023-05-31
会议名称
2023 2ND CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, CFASTA
ISSN
0743-1619
EISSN
2378-5861
ISBN
978-1-6654-6952-4
会议录名称
卷号
2023-May
页码
1680-1685
会议日期
31 May-2 June 2023
会议地点
San Diego, CA, USA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In this paper, we focus on network structure inference problem for linear-quadratic (LQ) games from best-response dynamics. An adversary is considered to have no knowledge of the game network structure but have the ability to observe all players' best-response actions and manipulate some players' actions. This work presents a comprehensive framework for network learning from best-response dynamics in LQ games. First of all, we establish theoretic results that characterize network structure identifiability and provide numerical examples to demonstrate the usefulness of our theoretic results. Next, in the face of the inherent stability and sparsity constraints for the game network structure, we propose an information-theoretic stable and sparse system identification algorithm for learning the network structure. Finally, the effectiveness of the proposed learning algorithm is tested. The connection between network structure inference problem and classical system identification theory is covered by our work, which advances the literature.
关键词
学校署名
通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Science, Technology and Innovation Commission of ShenzhenMunicipality[ZDSYS20200811143601004]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号
WOS:001027160301083
EI入藏号
20233314564676
EI主题词
Dynamics ; Information Theory ; Religious Buildings
EI分类号
Public Buildings:402.2 ; Information Theory And Signal Processing:716.1 ; Machine Learning:723.4.2
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10156151
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/548998
专题工学院_系统设计与智能制造学院
作者单位
1.Australian Centre for Field Robotics, the University of Sydney, Sydney, Australia
2.School of System Design and Intelligent Manufacturing, Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems and the Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
通讯作者单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Yijun Chen,Kemi Ding,Guodong Shi. Network Learning from Best-Response Dynamics in LQ Games[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1680-1685.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yijun Chen]的文章
[Kemi Ding]的文章
[Guodong Shi]的文章
百度学术
百度学术中相似的文章
[Yijun Chen]的文章
[Kemi Ding]的文章
[Guodong Shi]的文章
必应学术
必应学术中相似的文章
[Yijun Chen]的文章
[Kemi Ding]的文章
[Guodong Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。