题名 | Intelligent Reflecting Surface Enabled Sensing: Cramer-Rao Bound Optimization |
作者 | |
通讯作者 | Xu, Jie |
发表日期 | 2023
|
DOI | |
发表期刊 | |
ISSN | 1053-587X
|
EISSN | 1941-0476
|
卷号 | 71页码:2011-2026 |
摘要 | This article investigates intelligent reflecting surface (IRS) enabled non-line-of-sight (NLoS) wireless sensing, in which an IRS is deployed to assist an access point (AP) to sense a target at its NLoS region. It is assumed that the AP is equipped with multiple antennas and the IRS is equipped with a uniform linear array. We consider two types of target models, namely the point and extended targets, for which the AP aims to estimate the targets direction-of-arrival (DoA) and the target response matrix with respect to the IRS, respectively, based on the echo signals from the AP-IRS-target-IRS-AP link. Under this setup, we jointly design the transmit beamforming at the AP and the reflective beamforming at the IRS to minimize the Cramer-Rao bound (CRB) on the estimation error. Towards this end, we first obtain the CRB expressions in closed form. It is shown that for the point target, the CRB for estimating the DoA depends on both the transmit and reflective beamformers; while for the extended target, the CRB for estimating the target response matrix only depends on the transmit beamformers. Next, we optimize the joint beamforming design to minimize the CRB for the point target via alternating optimization, semi-definite relaxation, and successive convex approximation. We also obtain the optimal transmit beamforming solution in closed form to minimize the CRB for the extended target. Numerical results show that for both cases, the proposed designs based on CRB minimization achieve improved sensing performances than other traditional schemes. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China["U2001208","HZQB-KCZYZ-2021067"]
; Hetao Shenzhen-HK Samp;T Cooperation Zone[92267202]
; Shenzhen Fundamental Research Program[JCYJ20210324133405015]
; Guangdong Provincial Key Laboratory of Future Networks of Intelligence[2022B1212010001]
; Shenzhen Science and Technology Program[20220815100308002]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Electrical & Electronic
|
WOS记录号 | WOS:001018661000001
|
出版者 | |
EI入藏号 | 20232314199095
|
EI主题词 | Array processing
; Cramer-Rao bounds
; Direction of arrival
; Mean square error
; Signal to noise ratio
; Wireless sensor networks
|
EI分类号 | Electromagnetic Waves in Relation to Various Structures:711.2
; Information Theory and Signal Processing:716.1
; Radio Systems and Equipment:716.3
; Data Communication, Equipment and Techniques:722.3
; Mathematical Statistics:922.2
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10138058 |
引用统计 |
被引频次[WOS]:49
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549024 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn SSE, Shenzhen 518172, Peoples R China 2.Chinese Univ Hong Kong Shenzhen, Future Network Intelligence Inst FNii, Shenzhen 518172, Peoples R China 3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China 4.Huawei, 2012 Labs, Wireless Technol Lab, Shenzhen 518129, Peoples R China 5.Weizmann Inst Sci, Fac Math & Comp Sci, IL-7610001 Rehovot, Israel |
推荐引用方式 GB/T 7714 |
Song, Xianxin,Xu, Jie,Liu, Fan,et al. Intelligent Reflecting Surface Enabled Sensing: Cramer-Rao Bound Optimization[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING,2023,71:2011-2026.
|
APA |
Song, Xianxin,Xu, Jie,Liu, Fan,Han, Tony Xiao,&Eldar, Yonina C..(2023).Intelligent Reflecting Surface Enabled Sensing: Cramer-Rao Bound Optimization.IEEE TRANSACTIONS ON SIGNAL PROCESSING,71,2011-2026.
|
MLA |
Song, Xianxin,et al."Intelligent Reflecting Surface Enabled Sensing: Cramer-Rao Bound Optimization".IEEE TRANSACTIONS ON SIGNAL PROCESSING 71(2023):2011-2026.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论