中文版 | English
题名

Predictive Precoder Design for OTFS-Enabled URLLC: A Deep Learning Approach

作者
通讯作者Yuan, Weijie
发表日期
2023-07-01
DOI
发表期刊
ISSN
0733-8716
EISSN
1558-0008
卷号41期号:7页码:2245-2260
摘要
This paper investigates the orthogonal time frequency space (OTFS) transmission for enabling ultra-reliable low-latency communications (URLLC). To guarantee excellent reliability performance, pragmatic precoder design is an effective and indispensable solution. However, the design requires accurate instantaneous channel state information at the transmitter (ICSIT) which is not always available in practice. Motivated by this, we adopt a deep learning (DL) approach to exploit implicit features from estimated historical delay-Doppler domain channels (DDCs) to directly predict the precoder to be adopted in the next time frame for minimizing the frame error rate (FER), that can further improve the system reliability without the acquisition of ICSIT. To this end, we first establish a predictive transmission protocol and formulate a general problem for the precoder design where a closed-form theoretical FER expression is derived serving as the objective function to characterize the system reliability. Then, we propose a DL-based predictive precoder design framework which exploits an unsupervised learning mechanism to improve the practicability of the proposed scheme. As a realization of the proposed framework, we design a DDCs-aware convolutional long short-term memory (CLSTM) network for the precoder design, where both the convolutional neural network and LSTM modules are adopted to facilitate the spatial-temporal feature extraction from the estimated historical DDCs to further enhance the precoder performance. Simulation results demonstrate that the proposed scheme facilitates a flexible reliability-latency tradeoff and achieves an excellent FER performance that approaches the lower bound obtained by a genie-aided benchmark requiring perfect ICSI at both the transmitter and receiver.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[62101232] ; Guangdong Provincial Natural Science Foundation[2022A1515011257] ; Shenzhen Science and Technology Program[JCYJ20220530114412029] ; Australian Research Council's Discovery Project["DP210102169","DP230100603"]
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:001024232900019
出版者
EI入藏号
20232314199662
EI主题词
Benchmarking ; Channel estimation ; Channel state information ; Convolution ; Extraction ; Frequency estimation ; Long short-term memory ; Signal encoding ; Testbeds ; Transmitters
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Applications:723.5 ; Chemical Operations:802.3
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10138552
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549038
专题工学院_电子与电气工程系
作者单位
1.Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Peoples R China
2.Tech Univ Berlin, Dept Elect Engn & Comp Sci, D-10587 Berlin, Germany
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
4.Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
5.Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Liu, Chang,Li, Shuangyang,Yuan, Weijie,et al. Predictive Precoder Design for OTFS-Enabled URLLC: A Deep Learning Approach[J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,2023,41(7):2245-2260.
APA
Liu, Chang,Li, Shuangyang,Yuan, Weijie,Liu, Xuemeng,&Ng, Derrick Wing Kwan.(2023).Predictive Precoder Design for OTFS-Enabled URLLC: A Deep Learning Approach.IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,41(7),2245-2260.
MLA
Liu, Chang,et al."Predictive Precoder Design for OTFS-Enabled URLLC: A Deep Learning Approach".IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 41.7(2023):2245-2260.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Chang]的文章
[Li, Shuangyang]的文章
[Yuan, Weijie]的文章
百度学术
百度学术中相似的文章
[Liu, Chang]的文章
[Li, Shuangyang]的文章
[Yuan, Weijie]的文章
必应学术
必应学术中相似的文章
[Liu, Chang]的文章
[Li, Shuangyang]的文章
[Yuan, Weijie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。