题名 | Comprehensive Evaluation and Optimization of the Data-Dependent LC-MS/MS Workflow for Deep Proteome Profiling |
作者 | |
通讯作者 | Tian, Ruijun; Liu, Chao |
发表日期 | 2023-05-10
|
DOI | |
发表期刊 | |
ISSN | 0003-2700
|
EISSN | 1520-6882
|
卷号 | 95期号:20页码:7897-7905 |
摘要 | Data-dependentliquid chromatography-tandem massspectrometry(LC-MS/MS) is widely used in proteomic analyses. A well-performedLC-MS/MS workflow, which involves multiple procedures and interdependentmetrics, is a prerequisite for deep proteome profiling. Researchershave previously evaluated LC-MS/MS performance mainly basedon the number of identified peptides and proteins. However, this isnot a comprehensive approach. This motivates us to develop MSRefine,which aims to evaluate and optimize the performance of the LC-MS/MSworkflow for data-dependent acquisition (DDA) proteomics. It extracts 47 kinds of metrics, scores the metrics, and reports visual results,assisting users in evaluating the workflow, locating problems, andproviding optimizing strategies. In this study, we compared and analyzedmultiple pairs of datasets spanning different samples, methods, andinstruments and demonstrated that the comprehensive visual metricsand scores in MSRefine enable us to evaluate the performance of thevarious experiments and provide optimal strategies for the identificationof more peptides and proteins. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 通讯
|
资助项目 | National Key R&D Program of China["2021YFA1301602","2021YFA1301603"]
; National Natural Science Foundation of China[32171442]
|
WOS研究方向 | Chemistry
|
WOS类目 | Chemistry, Analytical
|
WOS记录号 | WOS:001010178800001
|
出版者 | |
EI入藏号 | 20232314180995
|
EI主题词 | Liquid chromatography
; Mass spectrometry
; Molecular biology
|
EI分类号 | Biology:461.9
; Chemistry:801
|
ESI学科分类 | CHEMISTRY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549158 |
专题 | 理学院_化学系 |
作者单位 | 1.Beihang Univ, Sch Biol Sci & Med Engn, Beijing 100191, Peoples R China 2.Beihang Univ, Sch Engn Med, Beijing 100191, Peoples R China 3.Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Res Ctr Chem Biol & Om Anal, Shenzhen 518055, Peoples R China 5.Zhejiang Univ, Inst Immunol, Sch Med, Hangzhou 310058, Zhejiang, Peoples R China 6.Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Rheumatol, Hangzhou 310058, Zhejiang, Peoples R China 7.Shandong Univ Technol, Sch Comp Sci & Technol, Zibo 266590, Peoples R China 8.Shanghai Omicsolut Co Ltd, Shanghai 201199, Peoples R China |
通讯作者单位 | 化学系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Tang, Min,Huang, Peiwu,Wu, Lize,et al. Comprehensive Evaluation and Optimization of the Data-Dependent LC-MS/MS Workflow for Deep Proteome Profiling[J]. ANALYTICAL CHEMISTRY,2023,95(20):7897-7905.
|
APA |
Tang, Min.,Huang, Peiwu.,Wu, Lize.,Zhou, Piyu.,Gong, Pengyun.,...&Liu, Chao.(2023).Comprehensive Evaluation and Optimization of the Data-Dependent LC-MS/MS Workflow for Deep Proteome Profiling.ANALYTICAL CHEMISTRY,95(20),7897-7905.
|
MLA |
Tang, Min,et al."Comprehensive Evaluation and Optimization of the Data-Dependent LC-MS/MS Workflow for Deep Proteome Profiling".ANALYTICAL CHEMISTRY 95.20(2023):7897-7905.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论