中文版 | English
题名

Saliency Attack: Towards Imperceptible Black-box Adversarial Attack

作者
通讯作者Liu, Shengcai
发表日期
2023-06-01
DOI
发表期刊
ISSN
2157-6904
EISSN
2157-6912
卷号14期号:3
摘要
Deep neural networks are vulnerable to adversarial examples, even in the black-box setting where the attacker is only accessible to the model output. Recent studies have devised effective black-box attacks with high query efficiency. However, such performance is often accompanied by compromises in attack imperceptibility, hindering the practical use of these approaches. In this article, we propose to restrict the perturbations to a small salient region to generate adversarial examples that can hardly be perceived. This approach is readily compatible with many existing black-box attacks and can significantly improve their imperceptibility with little degradation in attack success rates. Furthermore, we propose the Saliency Attack, a newblack-box attack aiming to refine the perturbations in the salient region to achieve even better imperceptibility. Extensive experiments showthat compared to the state-of-the-art black-box attacks, our approach achievesmuch better imperceptibility scores, including most apparent distortion (MAD), L-0 and L-2 distances, and also obtains significantly better true success rate and effective query number judged by a human-like threshold on MAD. Importantly, the perturbations generated by our approach are interpretable to some extent. Finally, it is also demonstrated to be robust to different detection-based defenses.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Program of China[2022YFA1004102] ; National Natural Science Foundation of China[62250710682] ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386] ; Hong Kong Research Grants Council under the General Research Fund[15200021]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:001000229800007
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549174
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China
2.Hong Kong Polytechn Univ, Hong Kong, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
4.Hong Kong Polytechn Univ, Dept Comp, Hong Kong, Peoples R China
5.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
第一作者单位南方科技大学
通讯作者单位计算机科学与工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Dai, Zeyu,Liu, Shengcai,Li, Qing,et al. Saliency Attack: Towards Imperceptible Black-box Adversarial Attack[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2023,14(3).
APA
Dai, Zeyu,Liu, Shengcai,Li, Qing,&Tang, Ke.(2023).Saliency Attack: Towards Imperceptible Black-box Adversarial Attack.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,14(3).
MLA
Dai, Zeyu,et al."Saliency Attack: Towards Imperceptible Black-box Adversarial Attack".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 14.3(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dai, Zeyu]的文章
[Liu, Shengcai]的文章
[Li, Qing]的文章
百度学术
百度学术中相似的文章
[Dai, Zeyu]的文章
[Liu, Shengcai]的文章
[Li, Qing]的文章
必应学术
必应学术中相似的文章
[Dai, Zeyu]的文章
[Liu, Shengcai]的文章
[Li, Qing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。