中文版 | English
题名

Self-supervised Blind2Unblind deep learning scheme for OCT speckle reductions

作者
通讯作者Chen, Jinna
发表日期
2023-06-01
DOI
发表期刊
ISSN
2156-7085
卷号14期号:6页码:2773-2795
摘要
As a low-coherence interferometry-based imaging modality, optical coherence tomography (OCT) inevitably suffers from the influence of speckles originating from multiply scattered photons. Speckles hide tissue microstructures and degrade the accuracy of disease diagnoses, which thus hinder OCT clinical applications. Various methods have been proposed to address such an issue, yet they suffer either from the heavy computational load, or the lack of high-quality clean images prior, or both. In this paper, a novel self-supervised deep learning scheme, namely, Blind2Unblind network with refinement strategy (B2Unet), is proposed for OCT speckle reduction with a single noisy image only. Specifically, the overall B2Unet network architecture is presented first, and then, a global-aware mask mapper together with a loss function are devised to improve image perception and optimize sampled mask mapper blind spots, respectively. To make the blind spots visible to B2Unet, a new re-visible loss is also designed, and its convergence is discussed with the speckle properties being considered. Extensive experiments with different OCT image datasets are finally conducted to compare B2Unet with those state-of-the-art existing methods. Both qualitative and quantitative results convincingly demonstrate that B2Unet outperforms the state-of-the-art model-based and fully supervised deep-learning methods, and it is robust and capable of effectively suppressing speckles while preserving the important tissue micro-structures in OCT images in different cases.& COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[62220106006] ; Basic and Applied Basic Research Foundation of Guangdong Province[2021B1515120013] ; Key Research and Development Projects of Shaanxi Province[2021SF-342] ; Key Research Project of Shaanxi Higher Education Teaching Reform[21BG005]
WOS研究方向
Biochemistry & Molecular Biology ; Optics ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Biochemical Research Methods ; Optics ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001014778000003
出版者
EI入藏号
20232514261848
EI主题词
Deep learning ; Diagnosis ; Image enhancement ; Learning systems ; Microstructure ; Network architecture ; Speckle ; Tissue
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Light/Optics:741.1 ; Optical Devices and Systems:741.3 ; Materials Science:951
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549208
专题工学院_电子与电气工程系
作者单位
1.Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
2.Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Guangzhou 51800, Peoples R China
3.Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
4.Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Jiangsu, Peoples R China
5.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Guangdong, Peoples R China
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Yu, Xiaojun,Ge, Chenkun,Li, Mingshuai,et al. Self-supervised Blind2Unblind deep learning scheme for OCT speckle reductions[J]. BIOMEDICAL OPTICS EXPRESS,2023,14(6):2773-2795.
APA
Yu, Xiaojun.,Ge, Chenkun.,Li, Mingshuai.,Yuan, Miao.,Liu, Linbo.,...&Chen, Jinna.(2023).Self-supervised Blind2Unblind deep learning scheme for OCT speckle reductions.BIOMEDICAL OPTICS EXPRESS,14(6),2773-2795.
MLA
Yu, Xiaojun,et al."Self-supervised Blind2Unblind deep learning scheme for OCT speckle reductions".BIOMEDICAL OPTICS EXPRESS 14.6(2023):2773-2795.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu, Xiaojun]的文章
[Ge, Chenkun]的文章
[Li, Mingshuai]的文章
百度学术
百度学术中相似的文章
[Yu, Xiaojun]的文章
[Ge, Chenkun]的文章
[Li, Mingshuai]的文章
必应学术
必应学术中相似的文章
[Yu, Xiaojun]的文章
[Ge, Chenkun]的文章
[Li, Mingshuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。