中文版 | English
题名

EpiMob: Interactive Visual Analytics of Citywide Human Mobility Restrictions for Epidemic Control

作者
通讯作者Jiang, Renhe; Song, Xuan
发表日期
2023-08-01
DOI
发表期刊
ISSN
1077-2626
EISSN
1941-0506
卷号29期号:8页码:3586-3601
摘要
The outbreak of coronavirus disease (COVID-19) has swept across more than 180 countries and territories since late January 2020. As a worldwide emergency response, governments have implemented various measures and policies, such as self-quarantine, travel restrictions, work from home, and regional lockdown, to control the spread of the epidemic. These countermeasures seek to restrict human mobility because COVID-19 is a highly contagious disease that is spread by human-to-human transmission. Medical experts and policymakers have expressed the urgency to effectively evaluate the outcome of human restriction policies with the aid of big data and information technology. Thus, based on big human mobility data and city POI data, an interactive visual analytics system called Epidemic Mobility (EpiMob) was designed in this study. The system interactively simulates the changes in human mobility and infection status in response to the implementation of a certain restriction policy or a combination of policies (e.g., regional lockdown, telecommuting, screening). Users can conveniently designate the spatial and temporal ranges for different mobility restriction policies. Then, the results reflecting the infection situation under different policies are dynamically displayed and can be flexibly compared and analyzed in depth. Multiple case studies consisting of interviews with domain experts were conducted in the largest metropolitan area of Japan (i.e., Greater Tokyo Area) to demonstrate that the system can provide insight into the effects of different human mobility restriction policies for epidemic control, through measurements and comparisons.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering
WOS记录号
WOS:001022080200010
出版者
EI入藏号
20221511959382
EI主题词
Big data ; Diagnosis ; Disease control ; Visualization
EI分类号
Medicine and Pharmacology:461.6 ; Health Care:461.7 ; Data Processing and Image Processing:723.2
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9750868
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549235
专题南方科技大学
作者单位
1.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo 1138654, Japan
2.Southern Univ Sci & Technol, SUSTech UTokyo Joint Res Ctr Super Smart City, Shenzhen 518055, Guangdong, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Yang, Chuang,Zhang, Zhiwen,Fan, Zipei,et al. EpiMob: Interactive Visual Analytics of Citywide Human Mobility Restrictions for Epidemic Control[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2023,29(8):3586-3601.
APA
Yang, Chuang.,Zhang, Zhiwen.,Fan, Zipei.,Jiang, Renhe.,Chen, Quanjun.,...&Shibasaki, Ryosuke.(2023).EpiMob: Interactive Visual Analytics of Citywide Human Mobility Restrictions for Epidemic Control.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,29(8),3586-3601.
MLA
Yang, Chuang,et al."EpiMob: Interactive Visual Analytics of Citywide Human Mobility Restrictions for Epidemic Control".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 29.8(2023):3586-3601.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Chuang]的文章
[Zhang, Zhiwen]的文章
[Fan, Zipei]的文章
百度学术
百度学术中相似的文章
[Yang, Chuang]的文章
[Zhang, Zhiwen]的文章
[Fan, Zipei]的文章
必应学术
必应学术中相似的文章
[Yang, Chuang]的文章
[Zhang, Zhiwen]的文章
[Fan, Zipei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。