中文版 | English
题名

Cascaded face super-resolution with shape and identity priors

作者
通讯作者Tang, Bo
发表日期
2023-07-01
DOI
发表期刊
ISSN
1751-9659
EISSN
1751-9667
卷号17期号:11页码:3309-3322
摘要
Despite impressive progress in face super-resolution (SR), it is an open challenge to reconstruct a reliable SR face that preserves authentic facial characteristics. Here, the problem of super-resolving low-resolution (LR) faces to high-resolution (HR) ones is addressed. To tackle the ill-posed nature of face SR, the cascaded super-resolution network (CSRNet) is proposed to utilize shape and identity priors jointly and progressively, the first to explore multiple priors. Specifically, CSRNet adopts a cascaded structure to transform an LR face to HR face progressively via multiple stages. At each stage, CSRNet forces its output face image to match both the shape priors and identity priors extracted from the ground-truth HR face. The shape priors estimated in one stage are merged into the inputs of its subsequent stage to provide rich information for the face SR. To generate realistic yet discriminative faces, the cascaded super-resolution generative adversarial network (CSRGAN) is also proposed to incorporate the adversarial loss and identification loss into CSRNet. Extensive experiments on popular benchmarks show that the CSRNet and CSRGAN outperform existing face SR state-of-the-art methods, both quantitatively and qualitatively, and detailed ablation studies show the advantage of this method.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62206123]
WOS研究方向
Computer Science ; Engineering ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号
WOS:001021149600001
出版者
EI入藏号
20232914397559
EI主题词
Generative adversarial networks ; Image reconstruction ; Image resolution
EI分类号
Artificial Intelligence:723.4
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549285
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
3.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
第一作者单位南方科技大学;  计算机科学与工程系
通讯作者单位南方科技大学;  计算机科学与工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zeng, Dan,Li, Zelin,Yan, Xiao,et al. Cascaded face super-resolution with shape and identity priors[J]. IET IMAGE PROCESSING,2023,17(11):3309-3322.
APA
Zeng, Dan.,Li, Zelin.,Yan, Xiao.,Jiang, Wen.,Wang, Xinshao.,...&Tang, Bo.(2023).Cascaded face super-resolution with shape and identity priors.IET IMAGE PROCESSING,17(11),3309-3322.
MLA
Zeng, Dan,et al."Cascaded face super-resolution with shape and identity priors".IET IMAGE PROCESSING 17.11(2023):3309-3322.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng, Dan]的文章
[Li, Zelin]的文章
[Yan, Xiao]的文章
百度学术
百度学术中相似的文章
[Zeng, Dan]的文章
[Li, Zelin]的文章
[Yan, Xiao]的文章
必应学术
必应学术中相似的文章
[Zeng, Dan]的文章
[Li, Zelin]的文章
[Yan, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。