题名 | Iterative Approach of Experiment-Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO x Selective Reduction Catalysts |
作者 | |
通讯作者 | Suo, Hongri; Liu, Chongxuan |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
ISSN | 0013-936X
|
EISSN | 1520-5851
|
卷号 | 57页码:18080-18090 |
摘要 | ["Minimal research works on the application of artificialintelligence technology in environmental catalyst development. Thisstudy reports an iteration approach of a data-driven model with labexperiments to develop a novel catalyst of atmospheric pollutantsrapidly.","An iterative approachbetween machine learning (ML) and laboratoryexperiments was developed to accelerate the design and synthesis ofenvironmental catalysts (ECs) using selective catalytic reduction(SCR) of nitrogen oxides (NO x ) as an example.The main steps in the approach include training a ML model using therelevant data collected from the literature, screening candidate catalystsfrom the trained model, experimentally synthesizing and characterizingthe candidates, updating the ML model by incorporating the new experimentalresults, and screening promising catalysts again with the updatedmodel. This process is iterated with a goal to obtain an optimizedcatalyst. Using the iterative approach in this study, a novel SCRNO x catalyst with low cost, high activity,and a wide range of application temperatures was found and successfullysynthesized after four iterations. The approach is general enoughthat it can be readily extended for screening and optimizing the designof other environmental catalysts and has strong implications for thediscovery of other environmental materials."] |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Department of Science and Technology of Guangdong Province[2017ZT07Z479]
; National Natural Science Foundation of China[42007318]
|
WOS研究方向 | Engineering
; Environmental Sciences & Ecology
|
WOS类目 | Engineering, Environmental
; Environmental Sciences
|
WOS记录号 | WOS:001018802000001
|
出版者 | |
EI入藏号 | 20232914399240
|
EI主题词 | Catalysts
; Machine learning
; Nitrogen oxides
|
EI分类号 | Air Pollution Control:451.2
; Artificial Intelligence:723.4
; Chemical Agents and Basic Industrial Chemicals:803
; Chemical Products Generally:804
; Inorganic Compounds:804.2
|
ESI学科分类 | ENVIRONMENT/ECOLOGY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549305 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Guangdong, Peoples R China |
第一作者单位 | 环境科学与工程学院 |
通讯作者单位 | 环境科学与工程学院 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Chen, Yulong,Feng, Jia,Wang, Xin,et al. Iterative Approach of Experiment-Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO x Selective Reduction Catalysts[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2023,57:18080-18090.
|
APA |
Chen, Yulong.,Feng, Jia.,Wang, Xin.,Zhang, Cheng.,Ke, Dongfang.,...&Liu, Chongxuan.(2023).Iterative Approach of Experiment-Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO x Selective Reduction Catalysts.ENVIRONMENTAL SCIENCE & TECHNOLOGY,57,18080-18090.
|
MLA |
Chen, Yulong,et al."Iterative Approach of Experiment-Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO x Selective Reduction Catalysts".ENVIRONMENTAL SCIENCE & TECHNOLOGY 57(2023):18080-18090.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论