中文版 | English
题名

Iterative Approach of Experiment-Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO x Selective Reduction Catalysts

作者
通讯作者Suo, Hongri; Liu, Chongxuan
发表日期
2023-07-01
DOI
发表期刊
ISSN
0013-936X
EISSN
1520-5851
卷号57页码:18080-18090
摘要
["Minimal research works on the application of artificialintelligence technology in environmental catalyst development. Thisstudy reports an iteration approach of a data-driven model with labexperiments to develop a novel catalyst of atmospheric pollutantsrapidly.","An iterative approachbetween machine learning (ML) and laboratoryexperiments was developed to accelerate the design and synthesis ofenvironmental catalysts (ECs) using selective catalytic reduction(SCR) of nitrogen oxides (NO x ) as an example.The main steps in the approach include training a ML model using therelevant data collected from the literature, screening candidate catalystsfrom the trained model, experimentally synthesizing and characterizingthe candidates, updating the ML model by incorporating the new experimentalresults, and screening promising catalysts again with the updatedmodel. This process is iterated with a goal to obtain an optimizedcatalyst. Using the iterative approach in this study, a novel SCRNO x catalyst with low cost, high activity,and a wide range of application temperatures was found and successfullysynthesized after four iterations. The approach is general enoughthat it can be readily extended for screening and optimizing the designof other environmental catalysts and has strong implications for thediscovery of other environmental materials."]
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Department of Science and Technology of Guangdong Province[2017ZT07Z479] ; National Natural Science Foundation of China[42007318]
WOS研究方向
Engineering ; Environmental Sciences & Ecology
WOS类目
Engineering, Environmental ; Environmental Sciences
WOS记录号
WOS:001018802000001
出版者
EI入藏号
20232914399240
EI主题词
Catalysts ; Machine learning ; Nitrogen oxides
EI分类号
Air Pollution Control:451.2 ; Artificial Intelligence:723.4 ; Chemical Agents and Basic Industrial Chemicals:803 ; Chemical Products Generally:804 ; Inorganic Compounds:804.2
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549305
专题工学院_环境科学与工程学院
作者单位
Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Guangdong, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Chen, Yulong,Feng, Jia,Wang, Xin,et al. Iterative Approach of Experiment-Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO x Selective Reduction Catalysts[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY,2023,57:18080-18090.
APA
Chen, Yulong.,Feng, Jia.,Wang, Xin.,Zhang, Cheng.,Ke, Dongfang.,...&Liu, Chongxuan.(2023).Iterative Approach of Experiment-Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO x Selective Reduction Catalysts.ENVIRONMENTAL SCIENCE & TECHNOLOGY,57,18080-18090.
MLA
Chen, Yulong,et al."Iterative Approach of Experiment-Machine Learning for Efficient Optimization of Environmental Catalysts: An Example of NO x Selective Reduction Catalysts".ENVIRONMENTAL SCIENCE & TECHNOLOGY 57(2023):18080-18090.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Yulong]的文章
[Feng, Jia]的文章
[Wang, Xin]的文章
百度学术
百度学术中相似的文章
[Chen, Yulong]的文章
[Feng, Jia]的文章
[Wang, Xin]的文章
必应学术
必应学术中相似的文章
[Chen, Yulong]的文章
[Feng, Jia]的文章
[Wang, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。