中文版 | English
题名

Peacock patterns and resurgence in complex Chern-Simons theory

作者
通讯作者Garoufalidis, Stavros
发表日期
2023-09-01
DOI
发表期刊
ISSN
2522-0144
EISSN
2197-9847
卷号10期号:3
摘要
The partition function of complex Chern-Simons theory on a 3-manifold with torus boundary reduces to a finite-dimensional state-integral which is a holomorphic function of a complexified Planck's constant t in the complex cut plane and an entire function of a complex parameter u. This gives rise to a vector of factorially divergent perturbative formal power series whose Stokes rays form a peacock-like pattern in the complex plane. We conjecture that these perturbative series are resurgent, their trans-series involve two non-perturbative variables, their Stokes automorphism satisfies a unique factorization property and that it is given explicitly in terms of a fundamental matrix solution to a (dual) linear q-difference equation. We further conjecture that a distinguished entry of the Stokes automorphism matrix is the 3D-index of Dimofte-Gaiotto-Gukov. We provide proofs of our statements regarding the q-difference equations and their properties of their fundamental solutions and illustrate our conjectures regarding the Stokes matrices with numerical calculations for the two simplest hyperbolic 4(1) and 5(2) knots.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
NCCR "The Mathematics of Physics" (SwissMAP)[51NF40-182902] ; ERC-SyG project "Recursive and Exact New Quantum Theory" (ReNewQuantum) from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program[810573]
WOS研究方向
Mathematics
WOS类目
Mathematics
WOS记录号
WOS:001015068400001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549311
专题理学院_数学系
作者单位
1.Southern Univ Sci & Technol, Int Ctr Math, Dept Math, Shenzhen, Peoples R China
2.Max Planck Inst Math, D-53111 Bonn, Germany
3.Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
4.Univ Geneva, Dept Phys Theor, Sect Math, CH-1211 Geneva, Switzerland
第一作者单位数学系
通讯作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Garoufalidis, Stavros,Gu, Jie,Marino, Marcos. Peacock patterns and resurgence in complex Chern-Simons theory[J]. RESEARCH IN THE MATHEMATICAL SCIENCES,2023,10(3).
APA
Garoufalidis, Stavros,Gu, Jie,&Marino, Marcos.(2023).Peacock patterns and resurgence in complex Chern-Simons theory.RESEARCH IN THE MATHEMATICAL SCIENCES,10(3).
MLA
Garoufalidis, Stavros,et al."Peacock patterns and resurgence in complex Chern-Simons theory".RESEARCH IN THE MATHEMATICAL SCIENCES 10.3(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Garoufalidis, Stavros]的文章
[Gu, Jie]的文章
[Marino, Marcos]的文章
百度学术
百度学术中相似的文章
[Garoufalidis, Stavros]的文章
[Gu, Jie]的文章
[Marino, Marcos]的文章
必应学术
必应学术中相似的文章
[Garoufalidis, Stavros]的文章
[Gu, Jie]的文章
[Marino, Marcos]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。