题名 | Peacock patterns and resurgence in complex Chern-Simons theory |
作者 | |
通讯作者 | Garoufalidis, Stavros |
发表日期 | 2023-09-01
|
DOI | |
发表期刊 | |
ISSN | 2522-0144
|
EISSN | 2197-9847
|
卷号 | 10期号:3 |
摘要 | The partition function of complex Chern-Simons theory on a 3-manifold with torus boundary reduces to a finite-dimensional state-integral which is a holomorphic function of a complexified Planck's constant t in the complex cut plane and an entire function of a complex parameter u. This gives rise to a vector of factorially divergent perturbative formal power series whose Stokes rays form a peacock-like pattern in the complex plane. We conjecture that these perturbative series are resurgent, their trans-series involve two non-perturbative variables, their Stokes automorphism satisfies a unique factorization property and that it is given explicitly in terms of a fundamental matrix solution to a (dual) linear q-difference equation. We further conjecture that a distinguished entry of the Stokes automorphism matrix is the 3D-index of Dimofte-Gaiotto-Gukov. We provide proofs of our statements regarding the q-difference equations and their properties of their fundamental solutions and illustrate our conjectures regarding the Stokes matrices with numerical calculations for the two simplest hyperbolic 4(1) and 5(2) knots. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | NCCR "The Mathematics of Physics" (SwissMAP)[51NF40-182902]
; ERC-SyG project "Recursive and Exact New Quantum Theory" (ReNewQuantum) from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program[810573]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics
|
WOS记录号 | WOS:001015068400001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549311 |
专题 | 理学院_数学系 |
作者单位 | 1.Southern Univ Sci & Technol, Int Ctr Math, Dept Math, Shenzhen, Peoples R China 2.Max Planck Inst Math, D-53111 Bonn, Germany 3.Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland 4.Univ Geneva, Dept Phys Theor, Sect Math, CH-1211 Geneva, Switzerland |
第一作者单位 | 数学系 |
通讯作者单位 | 数学系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Garoufalidis, Stavros,Gu, Jie,Marino, Marcos. Peacock patterns and resurgence in complex Chern-Simons theory[J]. RESEARCH IN THE MATHEMATICAL SCIENCES,2023,10(3).
|
APA |
Garoufalidis, Stavros,Gu, Jie,&Marino, Marcos.(2023).Peacock patterns and resurgence in complex Chern-Simons theory.RESEARCH IN THE MATHEMATICAL SCIENCES,10(3).
|
MLA |
Garoufalidis, Stavros,et al."Peacock patterns and resurgence in complex Chern-Simons theory".RESEARCH IN THE MATHEMATICAL SCIENCES 10.3(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论