中文版 | English
题名

A Well-Balanced Partial Relaxation Scheme for the Two-Dimensional Saint-Venant System

作者
通讯作者Kurganov, Alexander
发表日期
2023-05-01
DOI
发表期刊
ISSN
1815-2406
EISSN
1991-7120
卷号33期号:5
摘要
We develop a new moving-water equilibria preserving partial relaxation (PR) scheme for the two-dimensional (2-D) Saint-Venant system of shallow water equations. The new scheme is a 2-D generalization of the one-dimensional (1-D) PR scheme recently proposed in [X. Liu, X. Chen, S. Jin, A. Kurganov, and H. Yu, SIAM J. Sci. Comput., 42 (2020), pp. A2206-A2229]. Our scheme is based on the PR approximation, which is designed in two steps. First, the geometric source terms are incorporated into the discharge fluxes, which results in a hyperbolic system with global fluxes. Second, the discharge equations are relaxed so that the nonlinearity is moved into the stiff right-hand side of the four added auxiliary equation. The obtained PR system is then numerically integrated using a semi-discrete hybrid upwind/central-upwind finitevolume method combined with an efficient semi-implicit ODE solver. The new 2-D PR scheme inherits the main advantages of the 1-D PR scheme: (i) no special treatment of the geometric source terms is required, (ii) no nonlinear (cubic) equations should be solved to obtain the point values of the water depth out of the reconstructed equilibrium variables. The performance of the proposed PR scheme is illustrated on a number of numerical examples, in which we demonstrate that the PR scheme not only capable of exactly preserving quasi 1-D moving-water steady states and accurately capturing their small perturbations, but can also handle genuinely 2-D steady states and their small perturbations in a non-oscillatory manner.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
NSFC["12111530004","12171226"] ; Guangdong Provincial Key Laboratory of Computa- tional Science and Material Design[2019B030301001]
WOS研究方向
Physics
WOS类目
Physics, Mathematical
WOS记录号
WOS:001016172500008
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549331
专题理学院_数学系
作者单位
1.Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Dept Math, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China
第一作者单位数学系
通讯作者单位数学系;  南方科技大学
推荐引用方式
GB/T 7714
Chen, Xi,Kurganov, Alexander. A Well-Balanced Partial Relaxation Scheme for the Two-Dimensional Saint-Venant System[J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS,2023,33(5).
APA
Chen, Xi,&Kurganov, Alexander.(2023).A Well-Balanced Partial Relaxation Scheme for the Two-Dimensional Saint-Venant System.COMMUNICATIONS IN COMPUTATIONAL PHYSICS,33(5).
MLA
Chen, Xi,et al."A Well-Balanced Partial Relaxation Scheme for the Two-Dimensional Saint-Venant System".COMMUNICATIONS IN COMPUTATIONAL PHYSICS 33.5(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Xi]的文章
[Kurganov, Alexander]的文章
百度学术
百度学术中相似的文章
[Chen, Xi]的文章
[Kurganov, Alexander]的文章
必应学术
必应学术中相似的文章
[Chen, Xi]的文章
[Kurganov, Alexander]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。