题名 | Cramer-type moderate deviation for quadratic forms with a fast rate |
作者 | |
通讯作者 | Fang, Xiao |
共同第一作者 | Fang, Xiao; Liu, Song-Hao; Shao, Qi-Man |
发表日期 | 2023-08-01
|
DOI | |
发表期刊 | |
ISSN | 1350-7265
|
EISSN | 1573-9759
|
卷号 | 29期号:3页码:2466 - 2491 |
摘要 | ["Let X-1,..., X-n be independent and identically distributed random vectors in R-d. Suppose EX1 = 0, Cov(X-1) = (I)d, where I-d is the d x d identity matrix. Suppose further that there exist positive constants t(0) and c(0) such that Ee(t0 vertical bar X1|) <= c(0) < infinity, where vertical bar center dot vertical bar denotes the Euclidean norm. Let W = Sigma(n)(i=1) X-i root n and let Z be a d-dimensional standard normal random vector. Let Q be a d x d symmetric positive definite matrix whose largest eigenvalue is 1. We prove that for 0 <= x <= epsilon n(1/6),","vertical bar P(|Q(1/2)W vertical bar > x)/P(vertical bar Q(1/2)Z vertical bar > x) - 1 vertical bar <= C (1 + x(5)/det (Q(1/2))n + x(6)/n) for d >= 5","and","vertical bar P(|Q(1/2)W vertical bar > x)/P(vertical bar Q(1/2)Z vertical bar > x) - 1 vertical bar <= C (1 + x(3)/det (Q(1/2))n(d/d+1) + x(6)/n) for 1 <= d <= 4,","where epsilon and C are positive constants depending only on d, t(0), and c(0). This is a first extension of Cramer-type moderate deviation to the multivariate setting with a faster convergence rate than 1/root n. The range of x = o(n(1/6)) for the relative error to vanish and the dimension requirement d >= 5 for the 1/n rate are both optimal. We prove our result using a new change of measure, a two-term Edgeworth expansion for the changed measure, and cancellation by symmetry for terms of the order 1/root n."] |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 共同第一
; 其他
|
资助项目 | Hong Kong RGC[ECS 24301617]
; GRF[
|
WOS研究方向 | Mathematics
|
WOS类目 | Statistics & Probability
|
WOS记录号 | WOS:001005621300027
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549347 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China 2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Guangdong, Peoples R China 3.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Dept Stat & Data Sci, SICM, Shenzhen 518055, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 |
Fang, Xiao,Liu, Song-Hao,Shao, Qi-Man. Cramer-type moderate deviation for quadratic forms with a fast rate[J]. BERNOULLI,2023,29(3):2466 - 2491.
|
APA |
Fang, Xiao,Liu, Song-Hao,&Shao, Qi-Man.(2023).Cramer-type moderate deviation for quadratic forms with a fast rate.BERNOULLI,29(3),2466 - 2491.
|
MLA |
Fang, Xiao,et al."Cramer-type moderate deviation for quadratic forms with a fast rate".BERNOULLI 29.3(2023):2466 - 2491.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论