中文版 | English
题名

Super-resolution GANs for upscaling unplanned urban settlements from remote sensing satellite imagery - the case of Chinese urban village detection

作者
通讯作者Wei, Chunzhu; Shi, Yuhui
发表日期
2023-12-31
DOI
发表期刊
ISSN
1753-8947
EISSN
1753-8955
卷号16期号:1页码:2623-2643
摘要
The semantic segmentation of informal urban settlements represents an essential contribution towards renovation strategies and reconstruction plans. In this context, however, a big challenge remains unsolved when dealing with incomplete data acquisitions from multiple sensing devices, especially when study areas are depicted by images of different resolutions. In practice, traditional methodologies are directed to downgrade the higher-resolution data to the lowest-resolution measure, to define an overall homogeneous dataset, which is however ineffective in downstream segmentation activities of such crowded unplanned urban environments. To this purpose, we hereby tackle the problem in the opposite direction, namely upscaling the lower-resolution data to the highest-resolution measure, contributing to assess the use of cutting-edge super-resolution generative adversarial network (SR-GAN) architectures. The experimental novelty targets the particular case involving the automatic detection of 'urban villages', sign of the quick transformation of Chinese urban environments. By aligning image resolutions from two different data sources (Gaofen-2 and Sentinel-2 data), we evaluated the degree of improvement with regard to pixel-based landcover segmentation, achieving, on a 1 m resolution target, classification accuracies up to 83%, 67% and 56% for 4x, 8x, and 10x resolution upgrades respectively, disclosing the advantages of artificially-upscaled images for segmenting detailed characteristics of informal settlements.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Fundamental Research Program[JCYJ20200109141235597] ; National Science Foundation of China["61761136008","42001178"] ; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)[311021018]
WOS研究方向
Physical Geography ; Remote Sensing
WOS类目
Geography, Physical ; Remote Sensing
WOS记录号
WOS:001022638700001
出版者
EI入藏号
20232814394078
EI主题词
Generative adversarial networks ; Image enhancement ; Remote sensing ; Rural areas ; Satellite imagery ; Semantic Segmentation ; Semantics
EI分类号
Satellites:655.2 ; Artificial Intelligence:723.4
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549352
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
2.Tsinghua Univ, Inst Global Change Studies, Dept EarthSystem Sci, Minist Educ,Ecol Field Stn East Asian Migratory Bi, Beijing, Peoples R China
3.Sun Yat sen Univ, Sch Geog & Planning, 132 Outer Ring Rd, Guangzhou 510006, Peoples R China
4.Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Crivellari, Alessandro,Wei, Hong,Wei, Chunzhu,et al. Super-resolution GANs for upscaling unplanned urban settlements from remote sensing satellite imagery - the case of Chinese urban village detection[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2023,16(1):2623-2643.
APA
Crivellari, Alessandro,Wei, Hong,Wei, Chunzhu,&Shi, Yuhui.(2023).Super-resolution GANs for upscaling unplanned urban settlements from remote sensing satellite imagery - the case of Chinese urban village detection.INTERNATIONAL JOURNAL OF DIGITAL EARTH,16(1),2623-2643.
MLA
Crivellari, Alessandro,et al."Super-resolution GANs for upscaling unplanned urban settlements from remote sensing satellite imagery - the case of Chinese urban village detection".INTERNATIONAL JOURNAL OF DIGITAL EARTH 16.1(2023):2623-2643.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Crivellari, Alessandro]的文章
[Wei, Hong]的文章
[Wei, Chunzhu]的文章
百度学术
百度学术中相似的文章
[Crivellari, Alessandro]的文章
[Wei, Hong]的文章
[Wei, Chunzhu]的文章
必应学术
必应学术中相似的文章
[Crivellari, Alessandro]的文章
[Wei, Hong]的文章
[Wei, Chunzhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。