题名 | Super-resolution GANs for upscaling unplanned urban settlements from remote sensing satellite imagery - the case of Chinese urban village detection |
作者 | |
通讯作者 | Wei, Chunzhu; Shi, Yuhui |
发表日期 | 2023-12-31
|
DOI | |
发表期刊 | |
ISSN | 1753-8947
|
EISSN | 1753-8955
|
卷号 | 16期号:1页码:2623-2643 |
摘要 | The semantic segmentation of informal urban settlements represents an essential contribution towards renovation strategies and reconstruction plans. In this context, however, a big challenge remains unsolved when dealing with incomplete data acquisitions from multiple sensing devices, especially when study areas are depicted by images of different resolutions. In practice, traditional methodologies are directed to downgrade the higher-resolution data to the lowest-resolution measure, to define an overall homogeneous dataset, which is however ineffective in downstream segmentation activities of such crowded unplanned urban environments. To this purpose, we hereby tackle the problem in the opposite direction, namely upscaling the lower-resolution data to the highest-resolution measure, contributing to assess the use of cutting-edge super-resolution generative adversarial network (SR-GAN) architectures. The experimental novelty targets the particular case involving the automatic detection of 'urban villages', sign of the quick transformation of Chinese urban environments. By aligning image resolutions from two different data sources (Gaofen-2 and Sentinel-2 data), we evaluated the degree of improvement with regard to pixel-based landcover segmentation, achieving, on a 1 m resolution target, classification accuracies up to 83%, 67% and 56% for 4x, 8x, and 10x resolution upgrades respectively, disclosing the advantages of artificially-upscaled images for segmenting detailed characteristics of informal settlements. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Shenzhen Fundamental Research Program[JCYJ20200109141235597]
; National Science Foundation of China["61761136008","42001178"]
; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)[311021018]
|
WOS研究方向 | Physical Geography
; Remote Sensing
|
WOS类目 | Geography, Physical
; Remote Sensing
|
WOS记录号 | WOS:001022638700001
|
出版者 | |
EI入藏号 | 20232814394078
|
EI主题词 | Generative adversarial networks
; Image enhancement
; Remote sensing
; Rural areas
; Satellite imagery
; Semantic Segmentation
; Semantics
|
EI分类号 | Satellites:655.2
; Artificial Intelligence:723.4
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549352 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China 2.Tsinghua Univ, Inst Global Change Studies, Dept EarthSystem Sci, Minist Educ,Ecol Field Stn East Asian Migratory Bi, Beijing, Peoples R China 3.Sun Yat sen Univ, Sch Geog & Planning, 132 Outer Ring Rd, Guangzhou 510006, Peoples R China 4.Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Crivellari, Alessandro,Wei, Hong,Wei, Chunzhu,et al. Super-resolution GANs for upscaling unplanned urban settlements from remote sensing satellite imagery - the case of Chinese urban village detection[J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH,2023,16(1):2623-2643.
|
APA |
Crivellari, Alessandro,Wei, Hong,Wei, Chunzhu,&Shi, Yuhui.(2023).Super-resolution GANs for upscaling unplanned urban settlements from remote sensing satellite imagery - the case of Chinese urban village detection.INTERNATIONAL JOURNAL OF DIGITAL EARTH,16(1),2623-2643.
|
MLA |
Crivellari, Alessandro,et al."Super-resolution GANs for upscaling unplanned urban settlements from remote sensing satellite imagery - the case of Chinese urban village detection".INTERNATIONAL JOURNAL OF DIGITAL EARTH 16.1(2023):2623-2643.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论