中文版 | English
题名

STCM: A spatio-temporal calibration model for low-cost air sensors

作者
通讯作者Zhang, Yingjun
发表日期
2023-10-01
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号644
摘要
Air pollution is one of the most common health-threatening factors, potentially causing millions of deaths every year. Static stations typically collect air pollution data by utilizing a small number of costly and high-quality sensors and numerous low-cost micro stations. However, data collected from micro stations usually suffers from large noise and thus calibration would be necessary for operating good air pollution governance. Point-to-point models and sequence-to-point models have the potential limitations of either failing to mine latent patterns embedded in historical time series or ignoring spatial dependency within a certain region. To address these issues, we propose a novel method called Spatio-Temporal Calibration Model (STCM) based on dual encoders. STCM consists of long-term encoder, short-term encoder, and decoder modules. The long-term encoder encodes historical reference data via GRU and extracts the trend, periodicity, and adjacency of the target pollutant through a temporal attention mechanism. The short-term encoder then reflects real-time conditions through a spatial attention mechanism, quantifying dynamic station -wise correlations between micro stations and the static station. The decoder ultimately integrates outputs of dual encoders and generates calibration results of all micro stations. STCM has been experimentally justified by comparing against nine baseline methods based on two real-world datasets.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2022YFB2603302] ; National Nature Science Foundation of China["62002148","51827813"] ; Ramp;D Program of Beijing Municipal Education Commission[KJZD20191000402]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:001023613200001
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549370
专题工学院_计算机科学与工程系
作者单位
1.Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
2.Beijing Jiaotong Univ, Key Lab Beijing Railway Engn, Beijing 100044, Peoples R China
3.Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
4.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China
5.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain inspired Intelligent, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Yingjun,Ju, Chang,Qin, Jiahu,et al. STCM: A spatio-temporal calibration model for low-cost air sensors[J]. INFORMATION SCIENCES,2023,644.
APA
Zhang, Yingjun.,Ju, Chang.,Qin, Jiahu.,Song, Liyan.,Liu, Xiaoqian.,...&Li, Zongxi.(2023).STCM: A spatio-temporal calibration model for low-cost air sensors.INFORMATION SCIENCES,644.
MLA
Zhang, Yingjun,et al."STCM: A spatio-temporal calibration model for low-cost air sensors".INFORMATION SCIENCES 644(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Yingjun]的文章
[Ju, Chang]的文章
[Qin, Jiahu]的文章
百度学术
百度学术中相似的文章
[Zhang, Yingjun]的文章
[Ju, Chang]的文章
[Qin, Jiahu]的文章
必应学术
必应学术中相似的文章
[Zhang, Yingjun]的文章
[Ju, Chang]的文章
[Qin, Jiahu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。