题名 | A Physics-Informed Recurrent Neural Network for RRAM Modeling |
作者 | |
通讯作者 | Chen, Quan |
DOI | |
发表日期 | 2023-07-01
|
会议名称 | ELECTRONICS
|
EISSN | 2079-9292
|
ISBN | 979-8-3503-0452-7
|
会议录名称 | |
卷号 | 12
|
期号 | 13
|
页码 | 438-443
|
会议日期 | 8-11 May 2023
|
会议地点 | Nanjing, China
|
出版者 | |
摘要 | Extracting behavioral models of RRAM devices is challenging due to their unique "memory" behaviors and rapid developments, for which well-established modeling frameworks and systematic parameter extraction processes are not available. In this work, we propose a physics-informed recurrent neural network (PiRNN) methodology to generate behavioral models of RRAM devices from practical measurement/simulation data. The proposed framework can faithfully capture the evolution of internal state and its impacts on the output. A series of modifications informed by the RRAM device physics are proposed to enhance the modeling capabilities. The integration strategy of Verilog-A equivalent circuits, is also developed for compatibility with existing general-purpose circuit simulators. The Verilog-A model can be easily adopted into the SPICE-type simulator for the circuit design with a variable step that differs from the training process. Numerical experiments with real RRAM devices data demonstrate the feasibility and advantages of the proposed methodology. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China (NSFC)[
|
WOS研究方向 | Computer Science
; Engineering
; Physics
|
WOS类目 | Computer Science, Information Systems
; Engineering, Electrical & Electronic
; Physics, Applied
|
WOS记录号 | WOS:001028512500001
|
EI入藏号 | 20233814757381
|
EI主题词 | Behavioral Research
; RRAM
|
EI分类号 | Ergonomics And Human Factors Engineering:461.4
; Data Storage, Equipment And Techniques:722.1
; Social Sciences:971
|
来源库 | Web of Science
|
全文链接 | https://www.mdpi.com/2079-9292/12/13/2906 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549389 |
专题 | 工学院_深港微电子学院 |
作者单位 | Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China |
第一作者单位 | 深港微电子学院 |
通讯作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Sha, Yanliang,Lan, Jun,Yida,Li,et al. A Physics-Informed Recurrent Neural Network for RRAM Modeling[C]:MDPI,2023:438-443.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论