中文版 | English
题名

A Physics-Informed Recurrent Neural Network for RRAM Modeling

作者
通讯作者Chen, Quan
DOI
发表日期
2023-07-01
会议名称
ELECTRONICS
EISSN
2079-9292
ISBN
979-8-3503-0452-7
会议录名称
卷号
12
期号
13
页码
438-443
会议日期
8-11 May 2023
会议地点
Nanjing, China
出版者
摘要

Extracting behavioral models of RRAM devices is challenging due to their unique "memory" behaviors and rapid developments, for which well-established modeling frameworks and systematic parameter extraction processes are not available. In this work, we propose a physics-informed recurrent neural network (PiRNN) methodology to generate behavioral models of RRAM devices from practical measurement/simulation data. The proposed framework can faithfully capture the evolution of internal state and its impacts on the output. A series of modifications informed by the RRAM device physics are proposed to enhance the modeling capabilities. The integration strategy of Verilog-A equivalent circuits, is also developed for compatibility with existing general-purpose circuit simulators. The Verilog-A model can be easily adopted into the SPICE-type simulator for the circuit design with a variable step that differs from the training process. Numerical experiments with real RRAM devices data demonstrate the feasibility and advantages of the proposed methodology.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
SCI ; EI
资助项目
National Natural Science Foundation of China (NSFC)[
WOS研究方向
Computer Science ; Engineering ; Physics
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Physics, Applied
WOS记录号
WOS:001028512500001
EI入藏号
20233814757381
EI主题词
Behavioral Research ; RRAM
EI分类号
Ergonomics And Human Factors Engineering:461.4 ; Data Storage, Equipment And Techniques:722.1 ; Social Sciences:971
来源库
Web of Science
全文链接https://www.mdpi.com/2079-9292/12/13/2906
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549389
专题工学院_深港微电子学院
作者单位
Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
第一作者单位深港微电子学院
通讯作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Sha, Yanliang,Lan, Jun,Yida,Li,et al. A Physics-Informed Recurrent Neural Network for RRAM Modeling[C]:MDPI,2023:438-443.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sha, Yanliang]的文章
[Lan, Jun]的文章
[Yida,Li]的文章
百度学术
百度学术中相似的文章
[Sha, Yanliang]的文章
[Lan, Jun]的文章
[Yida,Li]的文章
必应学术
必应学术中相似的文章
[Sha, Yanliang]的文章
[Lan, Jun]的文章
[Yida,Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。