题名 | Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker |
作者 | |
通讯作者 | Wang, Ruijia |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
ISSN | 0895-0695
|
EISSN | 1938-2057
|
卷号 | 94期号:4 |
摘要 | The development of portable nodal array in the recent years greatly improved the seismic monitoring ability across multiple scales. The dense arrays also directly benefit microseismic monitoring by providing relatively low-cost surface recordings. However, the rapid growth of seismic data is accompanied by the increased demand for efficient seismic phase picking. On the other hand, machine learning-based phase picking techniques achieved high stability and accuracy, showing promising potential to replace human labors and traditional automatic pickers. In this study, we applied a state-ofthe-art package on newly collected nodal array data around a hydraulic fracturing well in southwestern China. The array consists of up to 85 nodes with an average station spacing of less than a kilometer. Within the hydraulic fracturing stimulation periods, we detected - 3000 seismic events with magnitude down to - -2. After waveform crosscorrelation-based relocation, the 1979 relocated events clearly light up a 1 km long fault structure and several fractures. Furthermore, the frequency-magnitude distribution of the catalog exhibits weak bilinear features with relatively low b-value (0.88) and a moderate coefficient of variation (Cv - 2). The nature and origin of the observed earthquake cluster are then discussed and defined based on the industrial information, high-resolution earthquake catalog, and basic statistics. Finally, we summarized our experience and provided recommendations for applying similar approaches to other local scale, surface microseismic monitoring scenarios. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Shenzhen Science and Technology Foundation[20220814213519001]
; PetroChina's
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:001026496900004
|
出版者 | |
ESI学科分类 | GEOSCIENCES
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549409 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Guangdong, Peoples R China 2.Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen, Guangdong, Peoples R China 3.Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou, Peoples R China 4.China Natl Petr Corp, BGP Inc, Zhuozhou, Peoples R China |
第一作者单位 | 地球与空间科学系 |
通讯作者单位 | 地球与空间科学系 |
第一作者的第一单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Wang, Ruijia,Yang, Dikun,Chen, Yunfeng,et al. Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker[J]. SEISMOLOGICAL RESEARCH LETTERS,2023,94(4).
|
APA |
Wang, Ruijia,Yang, Dikun,Chen, Yunfeng,&Ren, Chenghao.(2023).Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker.SEISMOLOGICAL RESEARCH LETTERS,94(4).
|
MLA |
Wang, Ruijia,et al."Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker".SEISMOLOGICAL RESEARCH LETTERS 94.4(2023).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Wang2023srl.pdf(5181KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论