中文版 | English
题名

Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker

作者
通讯作者Wang, Ruijia
发表日期
2023-07-01
DOI
发表期刊
ISSN
0895-0695
EISSN
1938-2057
卷号94期号:4
摘要

The development of portable nodal array in the recent years greatly improved the seismic monitoring ability across multiple scales. The dense arrays also directly benefit microseismic monitoring by providing relatively low-cost surface recordings. However, the rapid growth of seismic data is accompanied by the increased demand for efficient seismic phase picking. On the other hand, machine learning-based phase picking techniques achieved high stability and accuracy, showing promising potential to replace human labors and traditional automatic pickers. In this study, we applied a state-ofthe-art package on newly collected nodal array data around a hydraulic fracturing well in southwestern China. The array consists of up to 85 nodes with an average station spacing of less than a kilometer. Within the hydraulic fracturing stimulation periods, we detected - 3000 seismic events with magnitude down to - -2. After waveform crosscorrelation-based relocation, the 1979 relocated events clearly light up a 1 km long fault structure and several fractures. Furthermore, the frequency-magnitude distribution of the catalog exhibits weak bilinear features with relatively low b-value (0.88) and a moderate coefficient of variation (Cv - 2). The nature and origin of the observed earthquake cluster are then discussed and defined based on the industrial information, high-resolution earthquake catalog, and basic statistics. Finally, we summarized our experience and provided recommendations for applying similar approaches to other local scale, surface microseismic monitoring scenarios.

相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Science and Technology Foundation[20220814213519001] ; PetroChina's
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001026496900004
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549409
专题理学院_地球与空间科学系
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Guangdong, Peoples R China
2.Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen, Guangdong, Peoples R China
3.Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang P, Hangzhou, Peoples R China
4.China Natl Petr Corp, BGP Inc, Zhuozhou, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Wang, Ruijia,Yang, Dikun,Chen, Yunfeng,et al. Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker[J]. SEISMOLOGICAL RESEARCH LETTERS,2023,94(4).
APA
Wang, Ruijia,Yang, Dikun,Chen, Yunfeng,&Ren, Chenghao.(2023).Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker.SEISMOLOGICAL RESEARCH LETTERS,94(4).
MLA
Wang, Ruijia,et al."Lighting Up a 1 km Fault near a Hydraulic Fracturing Well Using a Machine Learning-Based Picker".SEISMOLOGICAL RESEARCH LETTERS 94.4(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Wang2023srl.pdf(5181KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Ruijia]的文章
[Yang, Dikun]的文章
[Chen, Yunfeng]的文章
百度学术
百度学术中相似的文章
[Wang, Ruijia]的文章
[Yang, Dikun]的文章
[Chen, Yunfeng]的文章
必应学术
必应学术中相似的文章
[Wang, Ruijia]的文章
[Yang, Dikun]的文章
[Chen, Yunfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。