题名 | Bulk and porous Ti alloys produced by selective laser melting for biomedical applications |
姓名 | |
姓名拼音 | XU Jingyuan
|
学号 | 11863002
|
学位类型 | 博士
|
学位专业 | Mechanical & Mining Engineering
|
导师 | |
导师单位 | 材料科学与工程系
|
论文答辩日期 | 2023-05-26
|
论文提交日期 | 2023-07-29
|
学位授予单位 | 昆士兰大学
|
学位授予地点 | 昆士兰大学
|
摘要 | Hard tissue materials, such as bone and teeth, are highly sought after in the field of biomedical materials due to the increasing prevalence of illnesses and injuries. However, conventional metal biological materials have limitations in terms of biological safety and stress shielding. Research on titanium (Ti) has received a lot of attention because of its high specific strength, great biocompatibility, and resistance to corrosion. Metastable β-phase Ti alloy has a lower elastic modulus, higher mechanical strength, and greater biomechanical and biochemical compatibility as compared to α phase commercial pure Ti (CP-Ti) or Ti alloys with α+β phase. Molybdenum (Mo) is a trace element required by human body. Incorporating the trace element molybdenum (Mo) in Ti-Mo alloys, with a Mo content of at least 10–15 wt%, leads to a crystal structure primarily composed of the β phase. This study focuses on utilizing such alloys as the fundamental material. Though one of the most common and serious complications of implants, there is still no good solution to the problem of microbial infections. Ti implants are not inherently antimicrobial and therefore giving them antimicrobial properties by means of modification, thus preventing bacterial adhesion to their surface, is key to improving clinical success. The selection of the porous surface structure impacts cell proliferation as compared to dense implant samples. By incorporating a suitable porous structure into a low modulus β-phase Ti alloy, stress shielding effects and biocompatibility can be modulated. Selective Laser Melting (SLM) technique was used to create the porous structure, allowing for precise control of the fabrication of the porous Ti-15Mo alloy. Due to its technical attributes, the produced alloy has fine grains and higher mechanical qualities, and SLM technology allows for the free and controlled creation of complicated scaffolds. To prevent bacterial adhesion, antibacterial bioactive coatings can be prepared on the surface of Ti implants. Nano Ag has broad-spectrum antimicrobial properties, but its cytotoxicity is dose-dependent. Achieving an optimal concentration of Ag that balances biocompatibility and antimicrobial efficacy is crucial. Hydroxyapatite (HA), known for its bioactivity and osteogenic properties, can be combined with various antimicrobial agents. Coating Ag nanoparticles with HA reduces the risk to human tissues while maintaining the good antimicrobial properties of Ag. Hence, in order to further improve the osteogenicity on a cell adhesion scale and make the bonding of HA and Ti stronger, micro-arc oxidation (MAO) was introduced to modify the surface, covering the Ti surface with microporous TiO2. The widespread use of SLM is impeded by the high cost of pre-alloyed Ti-15Mo powders, limiting their application in orthopaedic implants. To address this issue, an in-situ laser alloying method was employed to mechanically blend inexpensive hydride-dehydrate (HDH) Ti powder with elemental Mo powder to create a composite powder feedstock (i.e. Ti+Mo). High relative density (99.76%) Ti-15Mo alloys were created by SLM after the printing parameters were optimised, and their in-situ alloying formation mechanisms are investigated in depth by finite element simulations of the melt pool. The mechanical properties of the as-printed Ti-15Mo alloy demonstrated high strength (~970 MPa) but high modulus (~110 GPa) and low ductility (0.9%). However, the inclusion of a small amount of yttrium (Y) at 0.2 wt.% significantly improved ductility. The optimized Ti-15Mo-0.2Y alloy exhibited a strength of ~1170 MPa, a modulus of ~85 GPa and a ductility of ~1.7%. In-situ laser alloying with various amounts of elemental Ag powder imparted antibacterial properties to the alloy. The Ti-15Mo-0.2Y-2.5Ag material showed an antibacterial activity of 92–95% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) without compromising cell viability of the MG-63 cell line. In vivo tests conducted on Sprague Dawley (SD) rats confirmed the alloy's good biocompatibility. The recent advancements in surface modification techniques for Ti implants, involving physical and/or chemical approaches, have been reviewed. As rapid and effective osseointegration is crucial for successful implant applications, biologically inert Ti materials face limitations in terms of surface cell adhesion, bioactivity, and bone-growth-inducing capabilities. Surface modification methods have been introduced to optimize wear resistance, biocompatibility, and antimicrobial properties of various Ti implant materials. The study successfully developed and optimized Ti-15Mo biomedical alloy using SLM from both elemental and pre-alloyed powders. Laser in-situ alloying of modified HDH-Ti with Mo resulted in a cost-effective alloy with significant cost reduction. Surface modification techniques, including MAO, were utilized on Ti-15Mo lattices to create composite coatings with desired functionalities. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2018
|
学位授予年份 | 2023-09
|
参考文献列表 | [Chapter 1: 1.8 References [1] A. International, Additive manufacturing — Qualification principles — Qualifying machine operators of laser metal powder bed fusion machines and equipment used in aerospace applications, 2020. [2] B.P. Conner, G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan, J.W. Limperos, Making sense of 3-D printing: Creating a map of additive manufacturing products and services, Additive Manufacturing 1-4 (2014) 64-76. [3] A. Mazzoli, Selective laser sintering in biomedical engineering, Med Biol Eng Comput 51(3) (2013) 245-256. [4] S. Singh, V.S. Sharma, A. Sachdeva, Progress in selective laser sintering using metallic powders: a review, Mater Sci Tech-Lond 32(8) (2016) 760-772. [5] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components - Process, structure and properties, Progress in Materials Science 92 (2018) 112-224. [6] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics 19(6) (2011) 776-781. [7] Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, L.E. Loh, Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy, Materials Characterization 94 (2014) 116-125. [8] J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Materials & Design 108 (2016) 308-318. [9] C. Yang, Y.J. Zhao, L.M. Kang, D.D. Li, W.W. Zhang, L.C. Zhang, High-strength silicon brass manufactured by selective laser melting, Materials Letters 210 (2018) 169-172. [10] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion, Progress in Materials Science 119 (2021). [11] M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, In-situ alloying in laser-based additive manufacturing processes: A critical review, Journal of Alloys and Compounds 872 (2021). [12] C. Mauffrey, B.T. Barlow, W. Smith, Management of Segmental Bone Defects, J Am Acad Orthop Sur 23(3) (2015) 143-153. [13] J.P. Schmitz, J.O. Hollinger, The Critical Size Defect as an Experimental-Model for Craniomandibulofacial Nonunions, Clinical Orthopaedics and Related Research (205) (1986) 299-308. [14] A. Kushner, Evaluation of Wolff's law of bone formation, Journal of Bone and Joint Surgery 22 (1940) 589-596. [15] H. Montazerian, E. Davoodi, M. Asadi-Eydivand, J. Kadkhodapour, M. Solati-Hashjin, Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties, Materials & Design 126 (2017) 98-114. [16] J. Luo, X. Jia, R. Gu, P. Zhou, Y. Huang, J. Sun, M. Yan, 316L Stainless Steel Manufactured by Selective Laser Melting and Its Biocompatibility with or without Hydroxyapatite Coating, Metals 8(7) (2018) 548. [17] T. Narushima, K. Ueda, Alfirano, Co-Cr Alloys as Effective Metallic Biomaterials, in: M. Niinomi, T. Narushima, M. Nakai (Eds.), Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 157-178. [18] L. Yuhua, Y. Chao, Z. Haidong, Q. Shengguan, L. Xiaoqiang, L. Yuanyuan, New Developments of Ti-Based Alloys for Biomedical Applications, Materials 7(3) (2014) 1709-1800. [19] L.Y. Chen, J.C. Huang, C.H. Lin, C.T. Pan, S.Y. Chen, T.L. Yang, D.Y. Lin, H.K. Lin, J.S.C. Jang, Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 682 (2017) 389-395. [20] S. Pal, G. Lojen, V. Kokol, I. Drstvensek, Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the Selective Laser Melting technique, J Manuf Process 35 (2018) 538-546. [21] M. Wang, Y. Wu, S. Lu, T. Chen, Y. Zhao, H. Chen, Z. Tang, Fabrication and characterization of selective laser melting printed Ti-6Al-4V alloys subjected to heat treatment for customized implants design, Prog. Nat. Sci. 26(6) (2016) 671-677. [22] P. Kumar, U. Ramamurty, Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti-6Al-4V alloy, Acta Materialia 169 (2019) 45-59. [23] R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Schrooten, J.P. Kruth, J. Van Humbeeck, Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures, Additive Manufacturing 5 (2015) 77-84. [24] A. Khorasani, I. Gibson, U.S. Awan, A. Ghaderi, The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V, Additive Manufacturing 25 (2019) 176-186. [25] P. Edwards, M. Ramulu, Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V, Fatigue Fract Eng M 38(10) (2015) 1228-1236. [26] T. Zhang, H. Li, S. Liu, S. Shen, H. Xie, W. Shi, G. Zhang, B. Shen, L. Chen, B. Xiao, M. Wei, Evolution of molten pool during selective laser melting of Ti-6Al-4V, Journal of Physics D-Applied Physics 52(5) (2019). [27] L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, T.B. Sercombe, Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy, Scripta Materialia 65(1) (2011) 21-24. [28] T.S. Mackey, Upgrading ilmenite into a high-grade synthetic rutile, JOM 46(4) (1994) 59-64. [29] E. Wiberg, N. Wiberg, A.F. Holleman, Inorganic chemistry, 1st English ed. / [edited] by Nils Wiberg. ed., Academic Press; De Gruyter, San Diego: Berlin; New York, 2001. [30] A.C.F. Ma Imam, Titanium Alloys as Implant MaterialsMedical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM International, West Conshohocken, PA, 1996. [31] H.L. Freese, M.G. Volas, J.R. Wood, Metallurgy and Technological Properties of Titanium and Titanium Alloys, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 25-51. [32] Titanium alloys for aerospace structures and engines, in: A.P. Mouritz (Ed.), Introduction to Aerospace Materials, Woodhead Publishing2012, pp. 202-223. [33] A. International, Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700), 2017. [34] A. International, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNS R56400), 2014. [35] A. International, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), 2013. [36] S.G. Sukaryo, A. Purnama, H. Hermawan, Structure and Properties of Biomaterials, in: F. Mahyudin, H. Hermawan (Eds.), Biomaterials and Medical Devices: A Perspective from an Emerging Country, Springer International Publishing, Cham, 2016, pp. 1-22. [37] S. Desai, B. Bidanda, P. Bártolo, Metallic and Ceramic Biomaterials: Current and Future Developments, in: P. Bártolo, B. Bidanda (Eds.), Bio-Materials and Prototyping Applications in Medicine, Springer US, Boston, MA, 2008, pp. 1-14. [38] M. Textor, C. Sittig, V. Frauchiger, S. Tosatti, D.M. Brunette, Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 171-230. [39] J.L. Xu, J.L. Zhang, L.Z. Bao, T. Lai, J.M. Luo, Y.F. Zheng, Preparation and bioactive surface modification of the microwave sintered porous Ti-15Mo alloys for biomedical application, Sci. China-Mater. 61(4) (2018) 545-556. [40] D. Smiler, M. Soltan, The Bone-Grafting Decision Tree: A Systematic Methodology for Achieving New Bone, Implant Dentistry 15(2) (2006) 122-128. [41] S. Gross, E.W. Abel, A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur, Journal of Biomechanics 34(8) (2001) 995-1003. [42] S. Chandar, R. Kotian, P. Madhyastha, S.P. Kabekkodu, P. Rao, In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants, J Indian Prosthodont Soc 17(1) (2017) 35-40. [43] J.L. Woodman, J.J. Jacobs, J.O. Galante, R.M. Urban, Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: A long-term study, Journal of Orthopaedic Research 1(4) (1983) 421-430. [44] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Progress in Materials Science 54(3) (2009) 397-425. [45] Y.Y. Li, L.M. Zou, C. Yang, Y.H. Li, L.J. Li, Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 560 (2013) 857-861. [46] L.J. Gibson, M.F. Ashby, Cancellous bone, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1997, pp. 429-452. [47] A. International, Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications (UNS R58150), 2018. [48] J.R. Severino Martins Junior, R.A. Nogueira, R.O. de Araujo, T.A. Goto Donato, V.E. Arana-Chavez, A.P. Rosifini Alves Claro, J.C. Silos Moraes, M.A. Rabelo Buzalaf, C.R. Grandini, Preparation and Characterization of Ti-15Mo Alloy used as Biomaterial, Materials Research-Ibero-American Journal of Materials 14(1) (2011) 107-112. [49] N.J. Hallab, S. Anderson, T. Stafford, T. Glant, J.J. Jacobs, Lymphocyte responses in patients with total hip arthroplasty, Journal of Orthopaedic Research 23(2) (2005) 384-391. [50] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, Corrosion resistance of ultra fine-grained Ti, Scripta Materialia 51(3) (2004) 225-229. [51] F. Rajabi, A.Z. Hanzaki, H.R. Abedi, H. Hoseiny, A. Najdahmadi, E. Bertrand, Microstructure evolution and corrosion behavior of Ti-29Nb-13Ta-4.6Zr nano-biocomposite fabricated by friction stir processing in simulated body fluid solution, Materials Research Express 6(10) (2019). [52] A.P.R. Alves, F.A. Santana, L.A.A. Rosa, S.A. Cursino, E.N. Codaro, A study on corrosion resistance of the Ti-10Mo experimental alloy after different processing methods, Materials Science & Engineering C-Biomimetic and Supramolecular Systems 24(5) (2004) 693-696. [53] M.V. Capela, H.A. Acciari, J.M.V. Capela, T.M. Carvalho, M.C.S. Melin, Repeatability of corrosion parameters for titanium-molybdenum alloys in 0.9% NaCl solution, Journal of Alloys and Compounds 465(1-2) (2008) 479-483. [54] N.T.C. Oliveira, A.C. Guastaldi, Electrochemical behavior of Ti-Mo alloys applied as biomaterial, Corrosion Science 50(4) (2008) 938-945. [55] N.T.C. Oliveira, A.C. Guastaldi, Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications, Acta Biomaterialia 5(1) (2009) 399-405. [56] C.F. Liu, T.H. Lee, J.F. Liu, W.T. Hou, S.J. Li, Y.L. Hao, H.B. Pan, H.H. Huang, A unique hybrid-structured surface produced by rapid electrochemical anodization enhances bio-corrosion resistance and bone cell responses of beta-type Ti-24Nb-4Zr-8Sn alloy, Scientific Reports 8 (2018). [57] S.A. Shabalovskaya, Surface, corrosion and biocompatibility aspects of Nitinol as an implant material, Bio-Medical Materials and Engineering 12(1) (2002) 69-109. [58] G.L.R.L.H.L.Y. QIN, Research advance in the osteointegration of surface bioactive coating on titanium alloys, Chinese Journal of Tissue Engineering Research 21(6) (2017) 969-974. [59] P. O'Hare, B.J. Meenan, G.A. Burke, G. Byrne, D. Dowling, J.A. Hunt, Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique, Biomaterials 31(3) (2010) 515-522. [60] P. Habibovic, F. Barrere, C.A. van Blitterswijk, K. de Groot, P. Layrolle, Biomimetic hydroxyapatite coating on metal implants, Journal of the American Ceramic Society 85(3) (2002) 517-522. [61] A. Kolk, J. Handschel, W. Drescher, D. Rothamel, F. Kloss, M. Blessmann, M. Heiland, K.-D. Wolff, R. Smeets, Current trends and future perspectives of bone substitute materials - From space holders to innovative biomaterials, Journal of Cranio-Maxillofacial Surgery 40(8) (2012) 706-718. [62] R. Zhao, R. Yang, P.R. Cooper, Z. Khurshid, A. Shavandi, J. Ratnayake, Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments, Molecules 26(10) (2021). Chapter 2: 2.4 References [1] P.C. Collins, R. Banerjee, S. Banerjee, H.L. Fraser, Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 352(1-2) (2003) 118-128. [2] T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, R. Banerjee, A combinatorial assessment of AlxCrCuFeNi2(0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties, Acta Materialia 116 (2016) 63-76. [3] T. Borkar, R. Conteri, X. Chen, R.V. Ramanujan, R. Banerjee, Laser additive processing of functionally-graded Fe-Si-B-Cu-Nb soft magnetic materials, Materials and Manufacturing Processes 32(14) (2017) 1581-1587. [4] M.Y. Mendoza, P. Samimi, D.A. Brice, B.W. Martin, M.R. Rolchigo, R. Lesar, P.C. Collins, Microstructures and Grain Refinement of Additive-Manufactured Ti-xW Alloys, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 48A(7) (2017) 3594-3605. [5] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion, Progress in Materials Science 119 (2021). [6] W.E. Frazier, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance 23(6) (2014) 1917-1928. [7] H. Chen, C. Pan, L. Pan, X. Tao, Development of Wear-resistant Laser Cladding, Heat treatment of metals 27(9) (2002) 5-10. [8] M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, In-situ alloying in laser-based additive manufacturing processes: A critical review, Journal of Alloys and Compounds 872 (2021). [9] P.R. Halani, Y.C. Shin, In Situ Synthesis and Characterization of Shape Memory Alloy Nitinol by Laser Direct Deposition, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 43A(2) (2012) 650-657. [10] M. Simonelli, N.T. Aboulkhair, P. Cohen, J.W. Murray, A.T. Clare, C. Tuck, R.J.M. Hague, A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks, Materials Characterization 143 (2018) 118-126. [11] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Titanium Alloys Manufactured by In Situ Alloying During Laser Powder Bed Fusion, Jom 69(12) (2017) 2725-2730. [12] N. Kang, Y. Li, X. Lin, E. Feng, W. Huang, Microstructure and tensile properties of Ti-Mo alloys manufactured via using laser powder bed fusion, Journal of Alloys and Compounds 771 (2019) 877-884. [13] R.P. Kolli, D. Arun, A Review of Metastable Beta Titanium Alloys, Metals 8(7) (2018) 506. [14] P. Mohan, D.K. Rajak, C.I. Pruncu, A. Behera, V. Amigo-Borras, A.B. Elshalakany, Influence of beta-phase stability in elemental blended Ti-Mo and Ti-Mo-Zr alloys, Micron 142 (2021). [15] S.A. Mantri, T. Alam, D. Choudhuri, C.J. Yannetta, C.V. Mikler, P.C. Collins, R. Banerjee, The effect of boron on the grain size and texture in additively manufactured beta-Ti alloys, Journal of Materials Science 52(20) (2017) 12455-12466. [16] P. Qin, Y. Liu, T.B. Sercombe, Y. Li, C. Zhang, C. Cao, H. Sun, L.-C. Zhang, Improved Corrosion Resistance on Selective Laser Melting Produced Ti-5Cu Alloy after Heat Treatment, Acs Biomaterials Science & Engineering 4(7) (2018) 2633-2642. [17] D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Additive manufacturing of ultrafine-grained high-strength titanium alloys, Nature 576(7785) (2019) 91-+. [18] E.G. Brodie, A.E. Medvedev, J.E. Frith, M.S. Dargusch, H.L. Fraser, A. Molotnikov, Remelt processing and microstructure of selective laser melted Ti25Ta, Journal of Alloys and Compounds 820 (2020). [19] S. Huang, S.L. Sing, G. de Looze, R. Wilson, W.Y. Yeong, Laser powder bed fusion of titanium-tantalum alloys: Compositions and designs for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials 108 (2020). [20] H. Attar, L. Lober, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, J. Eckert, Mechanical behavior of porous commercially pure Ti and Ti-TiB composite materials manufactured by selective laser melting, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 625 (2015) 350-356. [21] C. Chen, Y. Hao, X. Bai, J.J. Ni, S.M. Chung, F. Liu, I.S. Lee, 3D printed porous Ti6Al4V cage: Effects of additive angle on surface properties and biocompatibility; bone ingrowth in Beagle tibia model, Materials & Design 175 (2019). [22] A.A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomaterials Science 3(2) (2015) 231-245. [23] L. Yuan, S. Ding, C. Wen, Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioactive Materials 4 (2019) 56-70. [24] C.M. Bidan, K.P. Kommareddy, M. Rumpler, P. Kollmannsberger, P. Fratzl, J.W.C. Dunlop, Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds, Advanced Healthcare Materials 2(1) (2013) 186-194. [25] R. Verma, J. Kumar, N.K. Singh, S.K. Rai, K.K. Saxena, J. Xu, Design and Analysis of Biomedical Scaffolds Using TPMS-Based Porous Structures Inspired from Additive Manufacturing, Coatings 12(6) (2022). [26] K. Brakke, Triply Periodic Minimal Surfaces, 2013. http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html. (Accessed 24 Sept 2022). [27] K. Brakke, The Gyroid Triply Periodic Minimal Surface, 2013. http://facstaff.susqu.edu/brakke/evolver/examples/periodic/gyroid/gyroid.html. (Accessed 24 Sept 2022). [28] H. Chen, Q. Han, C. Wang, Y. Liu, B. Chen, J. Wang, Porous Scaffold Design for Additive Manufacturing in Orthopedics: A Review, Frontiers in Bioengineering and Biotechnology 8 (2020). [29] E. Onal, J.E. Frith, M. Jurg, X. Wu, A. Molotnikov, Mechanical Properties and In Vitro Behavior of Additively Manufactured and Functionally Graded Ti6Al4V Porous Scaffolds, Metals 8(4) (2018). [30] C. Yan, L. Hao, A. Hussein, P. Young, Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials 51 (2015) 61-73. [31] A. Yanez, A. Cuadrado, O. Martel, H. Afonso, D. Monopoli, Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction, Materials & Design 140 (2018) 21-29. [32] A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications, Materials & Design 137 (2018) 345-354. [33] A. Ataee, Y.C. Li, M. Brandt, C. Wen, Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications, Acta Materialia 158 (2018) 354-368. [34] Y. Lu, L. Cheng, Z. Yang, J. Li, H. Zhu, Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure, Plos One 15(9) (2020). [35] S.B.G. Blanquer, M. Werner, M. Hannula, S. Sharifi, G.P.R. Lajoinie, D. Eglin, J. Hyttinen, A.A. Poot, D.W. Grijpma, Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds, Biofabrication 9(2) (2017). [36] S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, I.P. Kruth, J. Schrooten, The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomaterialia 8(7) (2012) 2824-2834. [37] M.C. Xu, D. Zhai, J. Chang, C.T. Wu, In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies, Acta Biomaterialia 10(1) (2014) 463-476. [38] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(27) (2005) 5474-5491. [39] F.M. Klenke, Y.L. Liu, H.P. Yuan, E.B. Hunziker, K.A. Siebenrock, W. Hofstetter, Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo, Journal of Biomedical Materials Research Part A 85a(3) (2008) 777-786. [40] C.M. Murphy, M.G. Haugh, F.J. O'Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials 31(3) (2010) 461-466. [41] S.J. Hollister, C.Y. Lin, E. Saito, R.D. Schek, J.M. Taboas, J.M. Williams, B. Partee, C.L. Flanagan, A. Diggs, E.N. Wilke, G.H. Van Lenthe, R. Muller, T. Wirtz, S. Das, S.E. Feinberg, P.H. Krebsbach, Engineering craniofacial scaffolds, Orthodontics & craniofacial research 8(3) (2005) 162-73. [42] C.M. Bidan, F.M. Wang, J.W. Dunlop, A three-dimensional model for tissue deposition on complex surfaces, Comput Method Biomec 16(10) (2013) 1056-1070. [43] J.A. Sanz-Herrera, P. Moreo, J.M. Garcia-Aznar, M. Doblare, On the effect of substrate curvature on cell mechanics, Biomaterials 30(34) (2009) 6674-6686. [44] J. Knychala, N. Bouropoulos, C.J. Catt, O.L. Katsamenis, C.P. Please, B.G. Sengers, Pore Geometry Regulates Early Stage Human Bone Marrow Cell Tissue Formation and Organisation, Ann Biomed Eng 41(5) (2013) 917-930. [45] J.Y. Park, D.H. Lee, E.J. Lee, S.H. Lee, Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes, Lab Chip 9(14) (2009) 2043-2049. [46] M. Werner, S.B.G. Blanquer, S.P. Haimi, G. Korus, J.W.C. Dunlop, G.N. Duda, D.W. Grijpma, A. Petersen, Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation, Adv Sci 4(2) (2017). [47] J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Mueller, L.G. Griffith, Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue Eng 7(5) (2001) 557-572. [48] C.D. Ji, A. Khademhosseini, F. Dehghani, Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications, Biomaterials 32(36) (2011) 9719-9729. [49] Y. Abdelrhman, M.A.H. Gepreel, S. Kobayashi, S. Okano, T. Okamoto, Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation, Materials Science and Engineering: C 99 (2019) 552-562. [50] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A 243(1) (1998) 231-236. [51] J.P. Luo, Y.J. Huang, J.Y. Xu, J.F. Sun, M.S. Dargusch, C.H. Hou, L. Ren, R.Z. Wang, T. Ebel, M. Yan, Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: Mechanical property, biocompatibility, and proteomics analysis, Materials Science and Engineering: C 114 (2020) 110903. [52] A.I. Arieff, J.D. Cooper, D. Armstrong, V.C. Lazarowitz, DEMENTIA, RENAL-FAILURE, AND BRAIN ALUMINUM, Annals of Internal Medicine 90(5) (1979) 741-747. [53] T.L. Petit, G.B. Biederman, P.A. McMullen, NEUROFIBRILLARY DEGENERATION, DENDRITIC DYING BACK, AND LEARNING-MEMORY DEFICITS AFTER ALUMINUM ADMINISTRATION - IMPLICATIONS FOR BRAIN AGING, Experimental Neurology 67(1) (1980) 152-162. [54] F. Luo, L. Wang, Z. Xiao, X. Zhu, Y. Fan, K. Wang, X. Zhang, Application of femtosecond laser microfabrication in the preparation of advanced bioactive titanium surfaces, Journal of Materials Chemistry B 9(18) (2021) 3912-3924. [55] S. Spriano, S. Yamaguchi, F. Baino, S. Ferraris, A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination, Acta Biomaterialia 79 (2018) 1-22. [56] A. Kolk, J. Handschel, W. Drescher, D. Rothamel, F. Kloss, M. Blessmann, M. Heiland, K.-D. Wolff, R. Smeets, Current trends and future perspectives of bone substitute materials - From space holders to innovative biomaterials, Journal of Cranio-Maxillofacial Surgery 40(8) (2012) 706-718. [57] R. Zhao, R. Yang, P.R. Cooper, Z. Khurshid, A. Shavandi, J. Ratnayake, Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments, Molecules 26(10) (2021). [58] L. He, D. Dai, L. Xie, Y. Chen, C. Zhang, Biological effects, applications and strategies of nanomodification of dental metal surfaces, Materials & Design 207 (2021) 109890. [59] S. Ferraris, A. Cochis, M. Cazzola, M. Tortello, A. Scalia, S. Spriano, L. Rimondini, Cytocompatible and Anti-bacterial Adhesion Nanotextured Titanium Oxide Layer on Titanium Surfaces for Dental and Orthopedic Implants, Frontiers in Bioengineering and Biotechnology 7 (2019). [60] L.C. Zhang, L.Y. Chen, L.Q. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Advanced Engineering Materials 22(5) (2020). [61] N. Soro, H. Attar, X. Wu, M.S. Dargusch, Investigation of the structure and mechanical properties of additively manufactured Ti-6Al-4V biomedical scaffolds designed with a Schwartz primitive unit-cell, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 745 (2019) 195-202. [62] N. Soro, N. Saintier, H. Attar, M.S. Dargusch, Surface and morphological modification of selectively laser melted titanium lattices using a chemical post treatment, Surface & Coatings Technology 393 (2020). [63] N. Soro, N. Saintier, J. Merzeau, M. Veidt, M.S. Dargusch, Quasi-static and fatigue properties of graded Ti-6A-4V lattices produced updates by Laser Powder Bed Fusion (LPBF), Additive Manufacturing 37 (2021). [64] pngimg.com, 2021. http://pngimg.com/images/miscellaneous/bone. (Accessed Aug 3 2021). [65] P.I. Branemark, R. Adell, U. Breine, B.O. Hansson, J. Lindstrom, A. Ohlsson, Intra-osseous anchorage of dental prostheses. I. Experimental studies, Scandinavian journal of plastic and reconstructive surgery 3(2) (1969) 81-100. [66] F. Parrino, F.R. Pomilla, G. Camera-Roda, V. Loddo, L. Palmisano, 2 - Properties of titanium dioxide, in: F. Parrino, L. Palmisano (Eds.), Titanium Dioxide (TiO₂) and Its Applications, Elsevier2021, pp. 13-66. [67] P. Tengvall, I. Lundstrom, Physico-chemical considerations of titanium as a biomaterial, Clinical materials 9(2) (1992) 115-34. [68] Z.Y. NING Cong-qin, Development and research status of biomedical titanium alloys, Material Science and Technology (01) (2002) 100-106. [69] G.A. Parks, The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems, Chemical Reviews 65(2) (1965) 177-198. [70] T. Kokubo, BIOACTIVE GLASS-CERAMICS - PROPERTIES AND APPLICATIONS, Biomaterials 12(2) (1991) 155-163. [71] P.J. Li, I. Kangasniemi, K. Degroot, T. Kokubo, BONELIKE HYDROXYAPATITE INDUCTION BY A GEL-DERIVED TITANIA ON A TITANIUM SUBSTRATE, Journal of the American Ceramic Society 77(5) (1994) 1307-1312. [72] A. International, Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700), 2017. [73] W.F. Ho, W.K. Chen, S.C. Wu, H.C. Hsu, Structure, mechanical properties, and grindability of dental Ti-Zr alloys, Journal of Materials Science-Materials in Medicine 19(10) (2008) 3179-3186. [74] A. International, Standard Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNS R56400), 2014. [75] K. Bordji, J.Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K.T. Rie, T. Stucky, M. HageAli, Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts, Biomaterials 17(9) (1996) 929-940. [76] A. International, Standard Specification for Wrought Titanium-6Aluminum-7Niobium Alloy for Surgical Implant Applications (UNS R56700), 2016. [77] X. Li, S.L. Ye, X.N. Yuan, P. Yu, Fabrication of biomedical Ti-24Nb-4Zr-8Sn alloy with high strength and low elastic modulus by powder metallurgy, Journal of Alloys and Compounds 772 (2019) 968-977. [78] L. Bolzoni, F. Yang, Development of Cu-bearing powder metallurgy Ti alloys for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials 97 (2019) 41-48. [79] L.J. Gibson, M.F. Ashby, Cancellous bone, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1997, pp. 429-452. [80] D.R. Sumner, J.O. Galante, DETERMINANTS OF STRESS SHIELDING - DESIGN VERSUS MATERIALS VERSUS INTERFACE, Clinical Orthopaedics and Related Research (274) (1992) 202-212. [81] R. Huiskes, H. Weinans, B. Vanrietbergen, THE RELATIONSHIP BETWEEN STRESS SHIELDING AND BONE-RESORPTION AROUND TOTAL HIP STEMS AND THE EFFECTS OF FLEXIBLE MATERIALS, Clinical Orthopaedics and Related Research (274) (1992) 124-134. [82] Y. Noyama, T. Miura, T. Ishimoto, T. Itaya, M. Niinomi, T. Nakano, Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty under Stress-Shielding Effects by Titanium-Based Implant, Materials Transactions 53(3) (2012) 565-570. [83] L.J.Z. Hongbo, Development of β-type Medical Titanium Alloys’ Performance, Journal of Oral Science Research (06) (2020) 501-508. [84] A.H. Plaine, M.R.d. Silva, C. Bolfarini, Effect of Thermo-Mechanical Treatments on the Microstructure and Mechanical Properties of the Metastable ²-type Ti-35Nb-7Zr-5Ta Alloy, Materials Research 22 (2019). [85] Y. Bai, Y.L. Hao, S.J. Li, Y.Q. Hao, R. Yang, F. Prima, Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions, Mater. Sci. Eng. C-Mater. Biol. Appl. 33(4) (2013) 2159-2167. [86] J. Li, S.J. Li, Y.L. Hao, H.H. Huang, Y. Bai, Y.Q. Hao, Z. Guo, J.Q. Xue, R. Yang, Electrochemical and surface analyses of nanostructured Ti-24Nb-4Zr-8Sn alloys in simulated body solution, Acta Biomaterialia 10(6) (2014) 2866-2875. [87] X. Zhan, S. Li, Y. Cui, A. Tao, C. Wang, H. Li, L. Zhang, H. Yu, J. Jiang, C. Li, Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods, Mater. Sci. Eng. C-Mater. Biol. Appl. 113 (2020). [88] M. Xiao, Y.M. Chen, M.N. Biao, X.D. Zhang, B.C. Yang, Bio-functionalization of biomedical metals, Mater. Sci. Eng. C-Mater. Biol. Appl. 70 (2017) 1057-1070. [89] D.P. Perl, A.R. Brody, ALZHEIMERS-DISEASE - X-RAY SPECTROMETRIC EVIDENCE OF ALUMINUM ACCUMULATION IN NEUROFIBRILLARY TANGLE-BEARING NEURONS, Science 208(4441) (1980) 297-299. [90] J.L. Woodman, J.J. Jacobs, J.O. Galante, R.M. Urban, Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: A long-term study, Journal of Orthopaedic Research 1(4) (1983) 421-430. [91] S. Chandar, R. Kotian, P. Madhyastha, S.P. Kabekkodu, P. Rao, In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants, J Indian Prosthodont Soc 17(1) (2017) 35-40. [92] S.A. Shabalovskaya, Surface, corrosion and biocompatibility aspects of Nitinol as an implant material, Bio-Medical Materials and Engineering 12(1) (2002) 69-109. [93] Y.Y. Li, L.M. Zou, C. Yang, Y.H. Li, L.J. Li, Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 560 (2013) 857-861. [94] C.F. Liu, T.H. Lee, J.F. Liu, W.T. Hou, S.J. Li, Y.L. Hao, H.B. Pan, H.H. Huang, A unique hybrid-structured surface produced by rapid electrochemical anodization enhances bio-corrosion resistance and bone cell responses of beta-type Ti-24Nb-4Zr-8Sn alloy, Scientific Reports 8 (2018). [95] G.L.R.L.H.L.Y. QIN, Research advance in the osteointegration of surface bioactive coating on titanium alloys, Chinese Journal of Tissue Engineering Research 21(6) (2017) 969-974. [96] B. Cheraghali, H.M. Ghasemi, M. Abedini, R. Yazdi, A functionalized duplex coating on CP-titanium for biomedical applications, Surface & Coatings Technology 399 (2020). [97] P. Ramasamy, S. Sundharam, Microhardness and corrosion resistance of plasma sprayed bioceramic bilayer coated Ti-6Al-4V implants, Journal of the Australian Ceramic Society 57(2) (2021) 605-613. [98] D. Avinash, S.P. Leo Kumar, Investigations on surface-integrity and mechanical properties of biocompatible grade Ti-6Al-7Nb alloy, Materials Technology (2021). [99] K. Lesniak-Ziolkowska, A. Kazek-Kesik, K. Rokosz, S. Raaen, A. Stolarczyk, M. Krok-Borkowicz, E. Pamula, M. Golda-Cepa, M. Brzychczy-Wloch, W. Simka, Electrochemical modification of the Ti-15Mo alloy surface in solutions containing ZnO and Zn-3(PO4)(2) particles, Mater. Sci. Eng. C-Mater. Biol. Appl. 115 (2020). [100] L. Wu, M. Jin, J. Liu, J. Han, X. Jin, A super-hydrophilic surface enhanced by the hierarchical reticular porous structure on a low-modulus Ti-24Nb-4Zr-8Sn alloy, Surface Engineering (2021). [101] M. Kheradmandfard, S.F. Kashani-Bozorg, J.S. Lee, C.-L. Kim, A.Z. Hanzaki, Y.-S. Pyun, S.-W. Cho, A. Amanov, D.-E. Kim, Significant improvement in cell adhesion and wear resistance of biomedical beta-type titanium alloy through ultrasonic nanocrystal surface modification, Journal of Alloys and Compounds 762 (2018) 941-949. [102] Y.P. Dong, J.C. Tang, D.W. Wang, N. Wang, Z.D. He, J. Li, D.P. Zhao, M. Yan, Additive manufacturing of pure Ti with superior mechanical performance, low cost, and biocompatibility for potential replacement of Ti-6Al-4V, Materials & Design 196 (2020). [103] F. Ning, Y. Hu, Z. Liu, W. Cong, Y. Li, X. Wang, Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: A Feasibility Study, 45th Sme North American Manufacturing Research Conference (Namrc 45) 10 (2017) 771-778. [104] L.W.-k. JIANG Hai-yan, WU Shi-biao, CHEN Jie, Application Status and Development Trend of Laser Selective Melting Technology, Mechanical Engineering & Automation 5 (2019) 223-226. [105] W. MEINERS, 52074 AACHEN, DE, ; WISSENBACH, KONRAD, DR., 52134 HERZOGENRATH, DE, ; GASSER, ANDRES, DR., 52066 AACHEN, DE, Shaped body especially prototype or replacement part production, Germany, 1996. [106] S. Zhang, X. Cheng, Y. Yao, Y. Wei, C. Han, Y. Shi, Q. Wei, Z. Zhang, Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior, Mater. Sci. Eng. C-Mater. Biol. Appl. 53 (2015) 50-59. [107] A. Dass, A. Moridi, State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, Coatings 9(7) (2019). [108] S. Kumar, 10.05 - Selective Laser Sintering/Melting, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.), Comprehensive Materials Processing, Elsevier, Oxford, 2014, pp. 93-134. [109] Z.X. Zhang, H. Dong, T. Bell, B. Xu, The effect of treatment condition on boost diffusion of thermally oxidised titanium alloy, Journal of Alloys and Compounds 431(1-2) (2007) 93-99. [110] X.D. Zhang, S.Z. Hao, X.N. Li, C. Dong, T. Grosdidier, Surface modification of pure titanium by pulsed electron beam, Applied Surface Science 257(13) (2011) 5899-5902. [111] A. Zakaria, H. Shukor, M. Todoh, K. Jusoff, Bio-Functional Coating on Ti6Al4V Surface Produced by Using Plasma Electrolytic Oxidation, Metals 10(9) (2020). [112] J.I. Rosales-Leal, M.A. Rodriguez-Valverde, G. Mazzaglia, P.J. Ramon-Torregrosa, L. Diaz-Rodriguez, O. Garcia-Martinez, M. Vallecillo-Capilla, C. Ruiz, M.A. Cabrerizo-Vilchez, Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion, Colloids and Surfaces a-Physicochemical and Engineering Aspects 365(1-3) (2010) 222-229. [113] Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Research progress on laser surface modification of titanium alloys, Applied Surface Science 242(1-2) (2005) 177-184. [114] D. He, S. Zheng, J. Pu, G. Zhang, L. Hu, Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film, Tribology International 82 (2015) 20-27. [115] H. Guo, W. Chen, Y. Shan, W. Wang, Z. Zhang, J. Jia, Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures, Applied Surface Science 357 (2015) 473-478. [116] J. Yao, Y. Wang, G. Wu, M. Sun, M. Wang, Q. Zhang, Growth characteristics and properties of micro-arc oxidation coating on SLM-produced TC4 alloy for biomedical applications, Applied Surface Science 479 (2019) 727-737. [117] C. Wang, Z. Li, H. Zhao, G. Zhang, T. Ren, Y. Zhang, Enhanced anticorrosion and antiwear properties of Ti-6Al-4V alloys with laser texture and graphene oxide coatings, Tribology International 152 (2020). [118] M.K. Kichi, R. Torkaman, H. Mohammadi, A. Toutounchi, M. Kharaziha, F. Alihosseini, Electrochemical and in vitro bioactivity behavior of poly (epsilon-caprolactone) (PCL)-gelatin-forsterite nano coating on titanium for biomedical application, Materials Today Communications 24 (2020). [119] A. Afrouzian, J.D. Avila, A. Bandyopadhyay, Biotribocorrosion of 3D-printed silica-coated Ti6Al4V for load-bearing implants, J. Mater. Res. (2021). [120] C. Alves, C. Neto, G.H.S. Morais, C.F. da Silva, V. Hajek, Nitriding of titanium disks and industrial dental implants using hollow cathode discharge, Surface & Coatings Technology 194(2-3) (2005) 196-202. [121] X.L. Zhu, K.H. Kim, Y.S. Jeong, Anodic oxide films containing Ca and P of titanium biomaterial, Biomaterials 22(16) (2001) 2199-2206. [122] M. Wu, H. Wei, Y. Wei, A. Yao, J. Bu, J. Lin, Z. Dong, Y. Chen, Y. Cui, Z. Wu, SERS properties of TiN nanotube arrays prepared via reduction nitridation of TiO2 nanotube arrays derived from anodic oxidation method, Vibrational Spectroscopy 95 (2018) 32-37. [123] B. Yilmaz, A.Z. Alshemary, Z. Evis, Co-doped hydroxyapatites as potential materials for biomedical applications, Microchemical Journal 144 (2019) 443-453. [124] L. Cao, I. Ullah, N. Li, S. Niu, R. Sun, D. Xia, R. Yang, X. Zhang, Plasma spray of biofunctional (Mg, Sr)-substituted hydroxyapatite coatings for titanium alloy implants, Journal of Materials Science & Technology 35(5) (2019) 719-726. [125] C.Z. Yan, L. Hao, A. Hussein, Q.S. Wei, Y.S. Shi, Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting, Mater. Sci. Eng. C-Mater. Biol. Appl. 75 (2017) 1515-1524. [126] W.H. Kao, Y.L. Su, J.H. Horng, C.Y. Chang, Tribological, electrochemical and biocompatibility properties of Ti6Al4V alloy produced by selective laser melting method and then processed using gas nitriding, CN or Ti-C:H coating treatments, Surface & Coatings Technology 350 (2018) 172-187. [127] O. Yigit, B. Dikici, T.C. Senocak, N. Ozdemir, One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses, Surface & Coatings Technology 394 (2020). [128] H. Singh, S. Singh, C. Prakash, Experimental investigation and parametric optimization of HA-TiO2 plasma spray coating on beta-phase titanium alloy, Materials Today-Proceedings 28 (2020) 1340-1344. [129] T.W. Clyne, S.C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals, International Materials Reviews 64(3) (2019) 127-162. [130] F. Simchen, M. Sieber, A. Kopp, T. Lampke, Introduction to Plasma Electrolytic Oxidation-An Overview of the Process and Applications, Coatings 10(7) (2020). [131] B. Januszewicz, D. Siniarski, The glow discharge plasma influence on the oxide layer and diffusion zone formation during process of thermal oxidation of titanium and its alloys, Vacuum 81(3) (2006) 215-220. [132] M.A.M. Silva, A.E. Martinelli, C. Alves, R.M. Nascimento, M.P. Tavora, C.D. Vilar, Surface modification of Ti implants by plasma oxidation in hollow cathode discharge, Surface & Coatings Technology 200(8) (2006) 2618-2626. [133] H. Hu, Z. Cao, X. Liu, X. Feng, Y. Zheng, K. Zhang, H. Zhou, Effects of substrate roughness on the vacuum tribological properties of duplex PEO/bonded-MoS2 coatings on Ti6Al4V, Surface & Coatings Technology 349 (2018) 593-601. [134] Q.Y.-m.P.Z.-j.L.B.-x.L.J.W. Peng, Fabrication and Wear Resistance of Hard Micro Arc Oxidation Coatings on Ti Alloys, Surface Technology (07) (2019) 81-88. [135] H. Kovacı, Comparison of the microstructural, mechanical and wear properties of plasma oxidized Cp-Ti prepared by laser powder bed fusion additive manufacturing and forging processes, Surface & Coatings Technology 374 (2019) 987-996. [136] J. Hu, H. Li, X. Wang, L. Yang, M. Chen, R. Wang, G. Qin, D.-F. Chen, E. Zhang, Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application, Mater. Sci. Eng. C-Mater. Biol. Appl. 115 (2020). [137] X. Chen, R.-f. Zhu, H. Gao, W.-l. Xu, G.-y. Xiao, C.-z. Chen, Y.-p. Lu, A high bioactive alkali-treated titanium surface induced by induction heat treatment, Surface & Coatings Technology 385 (2020). [138] C.C. Manole, A. Dinischiotu, C. Nica, I. Demetrescu, C. Pirvu, Influence of electrospun TiO2 nanowires on corrosion resistance and cell response of Ti50Zr alloy, Mater. Corros. 69(11) (2018) 1609-1619. [139] D. Ionita, C. Pirvu, A.B. Stoian, I. Demetrescu, The Trends of TiZr Alloy Research as a Viable Alternative for Ti and Ti16 Zr Roxolid Dental Implants, Coatings 10(4) (2020). [140] D.X. Ke, A.A. Vu, A. Bandyopadhyay, S. Bose, Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants, Acta Biomaterialia 84 (2019) 414-423. [141] B. Heer, A. Bandyopadhyay, Silica coated titanium using Laser Engineered Net Shaping for enhanced wear resistance, Additive Manufacturing 23 (2018) 303-311. [142] M. Das, V.K. Balla, T.S.S. Kumar, A. Bandyopadhyay, I. Manna, Tribological, electrochemical and in vitro biocompatibility properties of SiC reinforced composite coatings, Materials & Design 95 (2016) 510-517. [143] A. Bandyopadhyay, S. Dittrick, T. Gualtieri, J. Wu, S. Bose, Calcium phosphate-titanium composites for articulating surfaces of load-bearing implants, Journal of the Mechanical Behavior of Biomedical Materials 57 (2016) 280-288. [144] K. Stenberg, S. Dittrick, S. Bose, A. Bandyopadhyay, Influence of simultaneous addition of carbon nanotubes and calcium phosphate on wear resistance of 3D-printed Ti6Al4V, J. Mater. Res. 33(14) (2018) 2077-2086. [145] M.O. Klein, A. Bijelic, T. Ziebart, F. Koch, P.W. Kaemmerer, M. Wieland, M.A. Konerding, B. Al-Nawas, Submicron Scale-Structured Hydrophilic Titanium Surfaces Promote Early Osteogenic Gene Response for Cell Adhesion and Cell Differentiation, Clinical Implant Dentistry and Related Research 15(2) (2013) 166-175. [146] J. Jiang, G. Han, X. Zheng, G. Chen, P. Zhu, Characterization and biocompatibility study of hydroxyapatite coating on the surface of titanium alloy, Surface & Coatings Technology 375 (2019) 645-651. [147] D. Jugowiec, M. Kot, T. Moskalewicz, ELECTROPHORETIC DEPOSITION AND CHARACTERISATION OF CHITOSAN COATINGS ON NEAR-beta TITANIUM ALLOY, Archives of Metallurgy and Materials 61(2) (2016) 657-664. [148] W. Wang, Z. Wang, Y. Fu, N. Dunne, C. Liang, X. Luo, K. Liu, X. Li, X. Pang, K. Lu, Improved osteogenic differentiation of human amniotic mesenchymal stem cells on gradient nanostructured Ti surface, Journal of Biomedical Materials Research Part A 108(9) (2020) 1824-1833. [149] Z.G. Karaji, F. Jahanmard, A.H. Mirzaei, B. van der Wal, S.A. Yavari, A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration, Biomedical Materials 15(6) (2020). [150] Q. Lin, Y. Zhou, M. Yin, Y. Cheng, Y. Wei, Y. Hu, X. Lian, W. Chen, D. Huang, Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes, Colloids and Surfaces B-Biointerfaces 196 (2020). [151] S. Bajda, Y. Liu, R. Tosi, K. Cholewa-Kowalska, M. Krzyzanowski, M. Dziadek, M. Kopyscianski, S. Dymek, A.V. Polyakov, I.P. Semenova, T. Tokarski, Laser cladding of bioactive glass coating on pure titanium substrate with highly refined grain structure, Journal of the Mechanical Behavior of Biomedical Materials 119 (2021). [152] R. Huang, L. Zhang, L. Huang, J. Zhu, Enhanced in-vitro osteoblastic functions on beta-type titanium alloy using surface mechanical attrition treatment, Mater. Sci. Eng. C-Mater. Biol. Appl. 97 (2019) 688-697. [153] Y. Torres, P. Sarria, F.J. Gotor, E. Gutierrez, E. Peon, A.M. Beltran, J.E. Gonzalez, Surface modification of Ti-6Al-4V alloys manufactured by selective laser melting: Microstructural and tribo-mechanical characterization, Surface & Coatings Technology 348 (2018) 31-40. [154] C.H.-y.F.T.-l.G. Yan, Effect of Shot Peening Parameters on the Gradient Nanocrystalline Structure of TC4 Titanium Alloy, Surface Technology (05) (2020) 214-221. [155] A. Gunay-Bulutsuz, O. Berrak, H.A. Yeprem, E.D. Arisan, M.E. Yurci, Biological responses of ultrafine grained pure titanium and their sand blasted surfaces, Mater. Sci. Eng. C-Mater. Biol. Appl. 91 (2018) 382-388. [156] S.Z.-y.L.F.Z.J.-l.Z.G.-h.Y. Wen-bin, Research progress of various nano-materials reinforced and rare earth element doped Ti-HA composites, Metallic Functional Materials 24(02) (2017) 13-22. [157] D. Sivaraj, K. Vijayalakshmi, Substantial effect of magnesium incorporation on hydroxyapatite/carbon nanotubes coatings on metallic implant surfaces for better anticorrosive protection and antibacterial ability, Journal of Analytical and Applied Pyrolysis 135 (2018) 15-21. [158] B. Majkowska-Marzec, D. Rogala-Wielgus, M. Bartmanski, B. Bartosewicz, A. Zielinski, Comparison of Properties of the Hybrid and Bilayer MWCNTs-Hydroxyapatite Coatings on Ti Alloy, Coatings 9(10) (2019). [159] Q. Lin, D. Huang, J. Du, Y. Wei, Y. Hu, X. Lian, X. Xie, W. Chen, Y.S. Zhang, Nano-hydroxyapatite crystal formation based on calcified TiO2 nanotube arrays, Applied Surface Science 478 (2019) 237-246. [160] L. Fathyunes, J. Khalil-Allafi, S.O.R. Sheykholeslami, M. Moosavifar, Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition, Mater. Sci. Eng. C-Mater. Biol. Appl. 87 (2018) 10-21. [161] A.R. Rafieerad, A.R. Bushroa, A. Amiri, V. Gopinath, M. Sookhakian, S. Baradaran, M. Rafieerad, S. Saber-Samandari, J. Vadivelu, Large-scale hybrid silver nanowall-reduced graphene oxide biofilm: A novel morphology by facile electrochemical deposition, Surface & Coatings Technology 347 (2018) 297-303. [162] A.B. Stoian, I. Demetrescu, D. Ionita, Nanotubes and nano pores with chitosan construct on TiZr serving as drug reservoir, Colloids and Surfaces B-Biointerfaces 185 (2020). [163] S.P. Albu, P. Schmuki, Influence of anodization parameters on the expansion factor of TiO2 nanotubes, Electrochim Acta 91 (2013) 90-95. [164] L. Zhang, L. Pei, H. Li, S. Li, S. Liu, Y. Guo, Preparation and characterization of Na and F co-doped hydroxyapatite coating reinforced by carbon nanotubes and SiC nanoparticles, Materials Letters 218 (2018) 161-164. [165] H. Qiao, G. Song, Y. Huang, H. Yang, S. Han, X. Zhang, Z. Wang, J. Ma, X. Bu, L. Fu, Si, Sr, Ag co-doped hydroxyapatite/TiO2 coating: enhancement of its antibacterial activity and osteoinductivity, Rsc Advances 9(24) (2019) 13348-13364. [166] A. Mumith, V. San Cheong, P. Fromme, M.J. Coathup, G.W. Blunn, The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants, Plos One 15(1) (2020). [167] X. Sun, H. Lin, C. Zhang, X. Huang, J. Jin, S. Di, Electrosynthesized nanostructured polypyrrole on selective laser melted titanium scaffold, Surface & Coatings Technology 370 (2019) 11-17. [168] D. Jugowiec, A. Lukaszczyk, L. Cieniek, K. Kowalski, L. Rumian, K. Pietryga, M. Kot, E. Pamula, T. Moskalewicz, Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite/chitosan coatings on the Ti-13Nb-13Zr alloy, Surface & Coatings Technology 324 (2017) 64-79. [169] Y. Yu, X. Shen, Z. Luo, Y. Hu, M. Li, P. Ma, Q. Ran, L. Dai, Y. He, K. Cai, Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment, Biomaterials 167 (2018) 44-57. [170] M. Mansoorianfar, M. Tavoosi, R. Mozafarinia, A. Ghasemi, A. Doostmohammadi, Preparation and characterization of TiO2 nanotube arrays on Ti6A14V surface for enhancement of cell treatment, Surface & Coatings Technology 321 (2017) 409-415. [171] A. Bandyopadhyay, A. Shivaram, I. Mitra, S. Bose, Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration, Acta Biomaterialia 96 (2019) 686-693. [172] M. Shbeh, A. Yerokhin, R. Goodall, Cyclic voltammetry study of PEO processing of porous Ti and resulting coatings, Applied Surface Science 439 (2018) 801-814. [173] Y. Wang, J. Lou, L. Zeng, J. Xiang, S. Zhang, J. Wang, F. Xiong, C. Li, Y. Zhao, R. Zhang, Osteogenic potential of a novel microarc oxidized coating formed on Ti6A14V alloys, Applied Surface Science 412 (2017) 29-36. [174] J.J. Richardson, M. Bjoernmalm, F. Caruso, Technology-driven layer-by-layer assembly of nanofilms, Science 348(6233) (2015). [175] Y. Fang, S. Attarilar, Z. Yang, G. Wei, Y. Fu, L. Wang, Toward Bactericidal Enhancement of Additively Manufactured Titanium Implants, Coatings 11(6) (2021). [176] S.A. Yavari, M. Croes, B. Akhavan, F. Jahanmard, C.C. Eigenhuis, S. Dadbakhsh, H.C. Vogely, M.M. Bilek, A.C. Fluit, C.H.E. Boel, B.C.H. van der Wal, T. Vermonden, H. Weinans, A.A. Zadpoor, Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials, Additive Manufacturing 32 (2020). [177] P.W. Kaemmerer, A.M. Pabst, M. Dau, H. Staedt, B. Al-Nawas, M. Heller, Immobilization of BMP-2, BMP-7 and alendronic acid on titanium surfaces: Adhesion, proliferation and differentiation of bone marrow-derived stem cells, Journal of Biomedical Materials Research Part A 108(2) (2020) 212-220. [178] R. Huntley, E. Jensen, R. Gopalakrishnan, K.C. Mansky, Bone morphogenetic proteins: Their role in regulating osteoclast differentiation, Bone reports 10 (2019) 100207-100207. [179] M. Heller, V.V. Kumar, A. Pabst, J. Brieger, B. Al-Nawas, P.W. Kaemmerer, Osseous response on linear and cyclic RGD-peptides immobilized on titanium surfaces in vitro and in vivo, Journal of Biomedical Materials Research Part A 106(2) (2018) 419-427. [180] M. Roy, B.V. Krishna, A. Bandyopadhyay, S. Bose, Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants, Acta Biomaterialia 4(2) (2008) 324-333. [181] I. Mitra, S. Bose, W.S. Dernell, N. Dasgupta, C. Eckstrand, J. Herrick, M.J. Yaszemski, S.B. Goodman, A. Bandyopadhyay, 3D Printing in alloy design to improve biocompatibility in metallic implants, Materials Today 45 (2021) 20-34. [182] A. Fattah-alhosseini, M. Molaei, N. Attarzadeh, K. Babaei, F. Attarzadeh, On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: A review, Ceram. Int. 46(13) (2020) 20587-20607. [183] L.T.X.J.G.B.G. Cheng, Research Progress of Surface Modification of Biomedical Titanium Alloy, Hot Working Technology (20) (2021) 7-12. [184] X. Zhang, B. Wang, L. Ma, L. Xie, H. Yang, Y. Li, S. Wang, H. Qiao, H. Lin, J. Lan, Y. Huang, Chemical stability, antibacterial and osteogenic activities study of strontium-silver co-substituted fluorohydroxyapatite nanopillars: A potential multifunctional biological coating, Ceram. Int. 46(17) (2020) 27758-27773. [185] K. Kleszcz, M. Hebda, A. Kyziol, H. Krawiec, K. Kyziol, Towards prevention of biofilm formation: Ti6Al7Nb modified with nanocomposite layers of chitosan and Ag/Au nanoparticles, Applied Surface Science 557 (2021). [186] X. Zhang, Y. Lv, G. Cai, S. Fu, L. Yang, Y. Ma, Z. Dong, Reactive incorporation of Ag into porous TiO2 coating and its influence on its microstructure, in vitro antibacterial efficacy and cytocompatibility, Prog. Nat. Sci. 31(2) (2021) 215-229. [187] S.Y. Rahnamaee, R. Bagheri, H. Heidarpour, M. Vossoughi, M. Golizadeh, A. Samadikuchaksaraei, Nanofibrillated chitosan coated highly ordered titania nanotubes array/graphene nanocomposite with improved biological characters, Carbohydrate Polymers 254 (2021). [188] Y. Huang, G. Song, X. Chang, Z. Wang, X. Zhang, S. Han, Z. Su, H. Yang, D. Yang, X. Zhang, Nanostructured Ag+-substituted fluorhydroxyapatite-TiO2 coatings for enhanced bactericidal effects and osteoinductivity of Ti for biomedical applications, International Journal of Nanomedicine 13 (2018) 2665-2684. [189] M. Li, D. Mitra, E.-T. Kang, T. Lau, E. Chiong, K.G. Neoh, Thiol-ol Chemistry for Grafting of Natural Polymers to Form Highly Stable and Efficacious Antibacterial Coatings, Acs Applied Materials & Interfaces 9(2) (2017) 1847-1857. [190] B.H. Neufeld, M.J. Neufeld, A. Lutzke, S.M. Schweickart, M.M. Reynolds, Metal-Organic Framework Material Inhibits Biofilm Formation of Pseudomonas aeruginosa, Advanced Functional Materials 27(34) (2017). [191] X. Zhang, G. Zhang, H. Zhang, J. Li, X. Yao, B. Tang, Surface immobilization of heparin and chitosan on titanium to improve hemocompatibility and antibacterial activities, Colloids and Surfaces B-Biointerfaces 172 (2018) 338-345. [192] E. Avcu, Y.Y. Avcu, F.E. Bastan, M.A.U. Rehman, F. Ustel, A.R. Boccaccini, Tailoring the surface characteristics of electrophoretically deposited chitosan-based bioactive glass composite coatings on titanium implants via grit blasting, Progress in Organic Coatings 123 (2018) 362-373. [193] L. Huang, J. Chen, X. Li, H. Liu, J. Li, T. Ren, Y. Yang, S. Zhong, Polymethacrylic acid encapsulated TiO2 nanotubes for sustained drug release and enhanced antibacterial activities, New Journal of Chemistry 43(4) (2019) 1827-1837. [194] R. Zhang, X. Liu, Z. Xiong, Q. Huang, X. Yang, H. Yan, J. Ma, Q. Feng, Z. Shen, Novel micro/nanostructured TiO2/ZnO coating with antibacterial capacity and cytocompatibility, Ceram. Int. 44(8) (2018) 9711-9719. [195] K. Rokosz, T. Hryniewicz, W. Kacalak, K. Tandecka, S. Raaen, S. Gaiaschi, P. Chapon, W. Malorny, D. Matysek, K. Pietrzak, L. Dudek, Phosphate Coatings Enriched with Copper on Titanium Substrate Fabricated Via DC-PEO Process, Materials 13(6) (2020). [196] L. Zhang, J. Guo, T. Yan, Y. Han, Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants, Applied Surface Science 434 (2018) 633-642. [197] I.A.J. van Hengel, N.E. Putra, M.W.A.M. Tierolf, M. Minneboo, A.C. Fluit, L.E. Fratila-Apachitei, I. Apachitei, A.A. Zadpoor, Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria, Acta Biomaterialia 107 (2020) 325-337. [198] A.R. Luz, L.S. Santos, C.M. Lepienski, P.B. Kuroda, N.K. Kuromoto, Characterization of the morphology, structure and wettability of phase dependent lamellar and nanotube oxides on anodized Ti-10Nb alloy, Applied Surface Science 448 (2018) 30-40. [199] B. Del Curto, M.F. Brunella, C. Giordano, M.P. Pedeferri, V. Valtulina, L. Visai, A. Cigada, Decreased bacterial adhesion to surface-treated titanium, International Journal of Artificial Organs 28(7) (2005) 718-730. [200] L.J. He, J.C. Hao, L. Dai, R.C. Zeng, S.Q. Li, Layer-by-layer assembly of gentamicin-based antibacterial multilayers on Ti alloy, Materials Letters 261 (2020). [201] D. Ionita, D. Bajenaru-Georgescu, G. Totea, A. Mazare, P. Schmuki, I. Demetrescu, Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes, International Journal of Pharmaceutics 517(1-2) (2017) 296-302. [202] O. Janson, J.H. Soerensen, M. Stromme, H. Engqvist, P. Procter, K. Welch, Evaluation of an alkali-treated and hydroxyapatite-coated orthopedic implant loaded with tobramycin, Journal of Biomaterials Applications 34(5) (2019) 699-720. [203] A.S.K. Kiran, A. Kizhakeyil, R. Ramalingam, N.K. Verma, R. Lakshminarayanan, T.S.S. Kumar, M. Doble, S. Ramakrishna, Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections, Ceram. Int. 45(15) (2019) 18710-18720. [204] T. Maver, T. Mastnak, M. Mihelic, U. Maver, M. Finsgar, Clindamycin-Based 3D-Printed and Electrospun Coatings for Treatment of Implant-Related Infections, Materials 14(6) (2021). [205] A. Braem, L. Van Mellaert, T. Mattheys, D. Hofmans, E. De Waelheyns, L. Geris, J. Anne, J. Schrooten, J. Vleugels, Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications, Journal of Biomedical Materials Research Part A 102(1) (2014) 215-224. [206] A. Rifai, N. Tran, P. Reineck, A. Elbourne, E. Mayes, A. Sarker, C. Dekiwadia, E.P. Ivanova, R.J. Crawford, T. Ohshima, B.C. Gibson, A.D. Greentree, E. Pirogova, K. Fox, Engineering the Interface: Nanodiamond Coating on 3D-Printed Titanium Promotes Mammalian Cell Growth and Inhibits Staphylococcus aureus Colonization, Acs Applied Materials & Interfaces 11(27) (2019) 24588-24597. [207] A. Rifai, T. Nhiem, D.W. Lau, A. Elbourne, H. Zhan, A.D. Stacey, E.L.H. Mayes, A. Sarker, E.P. Ivanova, R.J. Crawford, P.A. Tran, B.C. Gibson, A.D. Greentree, E. Pirogova, K. Fox, Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications, Acs Applied Materials & Interfaces 10(10) (2018) 8474-8484. [208] J. Tang, Z. Wu, X. Yao, Y. Zhou, Y. Xiong, Y. Li, J. Xu, M.S. Dargusch, M. Yan, From bio-inertness to osseointegration and antibacterial activity: A one-step micro-arc oxidation approach for multifunctional Ti implants fabricated by additive manufacturing, Materials & Design 221 (2022) 110962.Chapter 3: 3.8 References [1] P. Liu, L. Du, F. Nie, Z. Li, Application of inert gas fusion-infrared absorption or thermal conductivity method for gas analysis in inorganic solid materials, Metallurgical Analysis 34(6) (2014) 42-48. [2] F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans, A.A. Zadpoor, Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia 53 (2017) 572-584. [3] L. Yuan, S. Ding, C. Wen, Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioactive Materials 4 (2019) 56-70. [4] A. Kushner, Evaluation of Wolff's law of bone formation, Journal of Bone and Joint Surgery 22 (1940) 589-596. [5] O. Al-Ketan, D.W. Lee, R. Rowshan, R.K. Abu Al-Rub, Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties, Journal of the Mechanical Behavior of Biomedical Materials 102 (2020). [6] K. GrosseBrauckmann, M. Wohlgemuth, The gyroid is embedded and has constant mean curvature companions, Calculus of Variations and Partial Differential Equations 4(6) (1996) 499-523. [7] D. Cvijovic, J. Klinowski, THE COMPUTATION OF THE TRIPLY PERIODIC I-WP MINIMAL SURFACE, Chemical Physics Letters 226(1-2) (1994) 93-99. [8] Y. Jung, S. Torquato, Fluid permeabilities of triply periodic minimal surfaces, Physical Review E 72(5) (2005). [9] D. Barba, E. Alabort, R.C. Reed, Synthetic bone: Design by additive manufacturing, Acta Biomaterialia 97 (2019) 637-656. [10] M. Tilton, A. Borjali, A. Isaacson, K.M. Varadarajan, G.P. Manogharan, On structure and mechanics of biomimetic meta -biomaterials fabricated via metal additive manufacturing, Materials & Design 201 (2021). [11] A. Ataee, Y.C. Li, M. Brandt, C. Wen, Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications, Acta Materialia 158 (2018) 354-368. [12] C. Torres-Sanchez, J.M. Borgman, B. Sargeant, H. Bell, E. Alabort, C. Lindsay, P.P. Conway, Comparison of Selective Laser Melted Commercially Pure Titanium Sheet-Based Triply Periodic Minimal Surfaces and Trabecular-Like Strut-Based Scaffolds for Tissue Engineering, Advanced Engineering Materials 24(1) (2022). [13] O. Al-Ketan, R.K. Abu Al-Rub, MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces, Material Design & Processing Communications 3(6) (2021) e205. [14] H. Ali, H. Ghadbeigi, K. Mumtaz, Residual stress development in selective laser-melted Ti6Al4V: a parametric thermal modelling approach, Int J Adv Manuf Tech 97(5-8) (2018) 2621-2633. [15] E.K.-A. Jr., Gaussian Heat Source, Principles of Laser Materials Processing, John Wiley & Sons2009, pp. 253-255. [16] Y.H. Zhou, W.P. Li, D.W. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, M. Yan, Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated, Acta Materialia 173 (2019) 117-129. [17] J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, M.J. Matthews, Energy Coupling Mechanisms and Scaling Behavior Associated with Laser Powder Bed Fusion Additive Manufacturing, Advanced Engineering Materials 21(7) (2019). [18] H.S. Carslaw, J.C. Jaeger, General Theory, Conduction of Heat in Solids, Clarendon Press1959. [19] D.R. Poirier, G.H. Geiger, Heat Transfer and the Energy Equation, Transport Phenomena in Materials Processing, Springer International Publishing, Cham, 2016, pp. 219-246. [20] J. Tang, Z. Wu, X. Yao, Y. Zhou, Y. Xiong, Y. Li, J. Xu, M.S. Dargusch, M. Yan, From bio-inertness to osseointegration and antibacterial activity: A one-step micro-arc oxidation approach for multifunctional Ti implants fabricated by additive manufacturing, Materials & Design 221 (2022) 110962. [21] S.Y. Xu, J.D. Long, L.N. Sim, C.H. Diong, K. Ostrikov, RF plasma sputtering deposition of hydroxyapatite bioceramics: Synthesis, performance, and biocompatibility, Plasma Process Polym 2(5) (2005) 373-390. [22] G. He, B. Guo, H. Wang, C. Liang, L. Ye, Y. Lin, X. Cai, Surface characterization and osteoblast response to a functionally graded hydroxyapatite/fluoro-hydroxyapatite/titanium oxide coating on titanium surface by sol-gel method, Cell Proliferation 47(3) (2014) 258-266. [23] D. Barnes, S. Johnson, R. Snell, S. Best, Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates, Journal of the Mechanical Behavior of Biomedical Materials 6 (2012) 128-138. [24] J. Valli, U. Makela, A. Matthews, V. Murawa, TIN COATING ADHESION STUDIES USING THE SCRATCH TEST METHOD, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 3(6) (1985) 2411-2414. [25] B. Ollivier, A. Matthews, ADHESION OF DIAMOND-LIKE CARBON-FILMS ON POLYMERS - AN ASSESSMENT OF THE VALIDITY OF THE SCRATCH TEST TECHNIQUE APPLIED TO FLEXIBLE SUBSTRATES, Journal of Adhesion Science and Technology 8(6) (1994) 651-662. [26] B. Feddes, P. González, J. Serra, J. Pou, S. Chiussi, J.G.C. Wolke, C. Jäger, Characterization of Thin Calcium Phosphate Coating, in: B. León, J. Jansen (Eds.), Thin Calcium Phosphate Coatings for Medical Implants, Springer New York, New York, NY, 2009, pp. 25-66. [27] A.J. Perry, ADHESION STUDIES OF ION-PLATED TIN ON STEEL, Thin Solid Films 81(4) (1981) 357-366. [28] J. Sekler, P.A. Steinmann, H.E. Hintermann, THE SCRATCH TEST - DIFFERENT CRITICAL LOAD DETERMINATION TECHNIQUES, Surface & Coatings Technology 36(1-2) (1988) 519-529. [29] P.R. Chalker, S.J. Bull, D.S. Rickerby, A REVIEW OF THE METHODS FOR THE EVALUATION OF COATING-SUBSTRATE ADHESION, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 140 (1991) 583-592. [30] S.J. Bull, FAILURE MODES IN SCRATCH ADHESION TESTING, Surface & Coatings Technology 50(1) (1991) 25-32. [31] J. Wang, P. Layrolle, M. Stigter, K. de Groot, Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment, Biomaterials 25(4) (2004) 583-592. [32] E. Matoso, L.T. Kubota, S. Cadore, Use of silica gel chemically modified with zirconium phosphate for preconcentration and determination of lead and copper by flame atomic absorption spectrometry, Talanta 60(6) (2003) 1105-1111. [33] M. Labieniec, T. Gabryelak, G. Falcioni, Antioxidant and pro-oxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus, Mutat Res-Gen Tox En 539(1-2) (2003) 19-28. [34] U.K. Parashar, V. Kumar, T. Bera, P.S. Saxena, G. Nath, S.K. Srivastava, R. Giri, A. Srivastava, Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles, Nanotechnology 22(41) (2011). [35] G. Horváth, Á. Farkas, N. Papp, T. Bencsik, K. Ács, K. Gyergyák, B. Kocsis, Chapter 3 - Natural Substances from Higher Plants as Potential Anti-MRSA Agents, in: R. Atta ur (Ed.), Studies in Natural Products Chemistry, Elsevier2016, pp. 63-110. Chapter 4:References [1] A. International, Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700), 2017. [2] R.P. Kolli, D. Arun, A Review of Metastable Beta Titanium Alloys, Metals 8(7) (2018) 506. [3] J. Xu, J. Zhang, Y. Shi, J. Tang, D. Huang, M. Yan, M.S. Dargusch, Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances, Materials 15(5) (2022) 1749. [4] D. Barba, E. Alabort, R.C. Reed, Synthetic bone: Design by additive manufacturing, Acta Biomaterialia 97 (2019) 637-656. [5] X.P. Tan, Y.J. Tan, C.S.L. Chow, S.B. Tor, W.Y. Yeong, Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility, Materials Science and Engineering C-Materials for Biological Applications 76 (2017) 1328-1343. [6] M. Yan, M. Qian, C. Kong, M.S. Dargusch, Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit, Acta Biomaterialia 10(2) (2014) 1014-1023. [7] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Progress in Materials Science 54(3) (2009) 397-425. [8] M.L. dos Santos, C.D. Riccardi, E. de Almeida, A.C. Guastaldi, Calcium phosphates of biological importance based coatings deposited on Ti-15Mo alloy modified by laser beam irradiation for dental and orthopedic applications, Ceram. Int. 44(18) (2018) 22432-22438. [9] S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, C. Yan, Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction, Materials & Design 114 (2017) 633-641. [10] S. Ghouse, N. Reznikov, O.R. Boughton, S. Babu, K.C.G. Ng, G. Blunn, J.P. Cobb, M.M. Stevens, J.R.T. Jeffers, The design and in vivo testing of a locally stiffness-matched porous scaffold, Applied Materials Today 15 (2019) 377-388. [11] M. Bram, C. Stiller, H.P. Buchkremer, D. Stover, H. Baur, High-porosity titanium, stainless steel, and superalloy parts, Advanced Engineering Materials 2(4) (2000) 196-199. [12] S.F. Hulbert, S.J. Morrison, J.J. Klawitter, TISSUE REACTION TO 3 CERAMICS OF POROUS AND NON-POROUS STRUCTURES, Journal of Biomedical Materials Research 6(5) (1972) 347-+. [13] L.D. Zardiackas, D.E. Parsell, L.D. Dillon, D.W. Mitchell, L.A. Nunnery, R. Poggie, Structure, metallurgy, and mechanical properties of a porous tantalum foam, Journal of Biomedical Materials Research 58(2) (2001) 180-187. [14] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(27) (2005) 5474-5491. [15] V.K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties, Acta Biomaterialia 6(8) (2010) 3349-3359. [16] S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, I.P. Kruth, J. Schrooten, The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomaterialia 8(7) (2012) 2824-2834. [17] M. de Wild, R. Schumacher, K. Mayer, E. Schkommodau, D. Thoma, M. Bredell, A.K. Gujer, K.W. Graetz, F.E. Weber, Bone Regeneration by the Osteoconductivity of Porous Titanium Implants Manufactured by Selective Laser Melting: A Histological and Micro Computed Tomography Study in the Rabbit, Tissue Engineering Part A 19(23-24) (2013) 2645-2654. [18] J.E. Biemond, G. Hannink, N. Verdonschot, P. Buma, Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating, Journal of Materials Science-Materials in Medicine 24(3) (2013) 745-753. [19] A.A. Zadpoor, Bone tissue regeneration: the role of scaffold geometry, Biomaterials Science 3(2) (2015) 231-245. [20] S.B.G. Blanquer, M. Werner, M. Hannula, S. Sharifi, G.P.R. Lajoinie, D. Eglin, J. Hyttinen, A.A. Poot, D.W. Grijpma, Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds, Biofabrication 9(2) (2017). [21] C.M. Bidan, F.M. Wang, J.W. Dunlop, A three-dimensional model for tissue deposition on complex surfaces, Comput Method Biomec 16(10) (2013) 1056-1070. [22] H. Jinnai, H. Watashiba, T. Kajihara, Y. Nishikawa, M. Takahashi, M. Ito, Surface curvatures of trabecular bone microarchitecture, Bone 30(1) (2002) 191-194. [23] U. Pinkall, K. Polthier, Computing Discrete Minimal Surfaces and Their Conjugates, Experimental Mathematics 2(1) (1993) 15-36. [24] F.S.L. Bobbert, K. Lietaert, A.A. Eftekhari, B. Pouran, S.M. Ahmadi, H. Weinans, A.A. Zadpoor, Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties, Acta Biomaterialia 53 (2017) 572-584. [25] N. Yang, Z. Quan, D.W. Zhang, Y.L. Tian, Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering, Comput Aided Design 56 (2014) 11-21. [26] M. Afshar, A.P. Anaraki, H. Montazerian, J. Kadkhodapour, Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures, Journal of the Mechanical Behavior of Biomedical Materials 62 (2016) 481-494. [27] S.J. Simske, R.A. Ayers, T.A. Bateman, Porous materials for bone engineering, Mater Sci Forum 250 (1997) 151-182. [28] F.M. Klenke, Y.L. Liu, H.P. Yuan, E.B. Hunziker, K.A. Siebenrock, W. Hofstetter, Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo, Journal of Biomedical Materials Research Part A 85a(3) (2008) 777-786. [29] C.M. Murphy, M.G. Haugh, F.J. O'Brien, The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials 31(3) (2010) 461-466. [30] S.J. Hollister, C.Y. Lin, E. Saito, R.D. Schek, J.M. Taboas, J.M. Williams, B. Partee, C.L. Flanagan, A. Diggs, E.N. Wilke, G.H. Van Lenthe, R. Muller, T. Wirtz, S. Das, S.E. Feinberg, P.H. Krebsbach, Engineering craniofacial scaffolds, Orthodontics & craniofacial research 8(3) (2005) 162-73. [31] A. Kumar, T.J. Webster, K. Biswas, B. Basu, Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered hydroxyapatite-titanium biocomposites, Journal of Biomedical Materials Research Part A 101(10) (2013) 2925-2938. [32] S.G. Kalinichenko, N.Y. Matveeva, R.E. Kostiv, A.V. Puz, Role of Vascular Endothelial Growth Factor and Transforming Growth Factor-beta 2 in Rat Bone Tissue after Bone Fracture and Placement of Titanium Implants with Bioactive Bioresorbable Coatings, Bulletin of Experimental Biology and Medicine 162(5) (2017) 671-675. [33] H.A. Siddiqui, K.L. Pickering, M.R. Mucalo, A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes, Materials 11(10) (2018). [34] L. Bai, Y. Liu, Z. Du, Z. Weng, W. Yao, X. Zhang, X. Huang, X. Yao, R. Crawford, R. Hang, D. Huang, B. Tang, Y. Xiao, Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration, Acta Biomaterialia 76 (2018) 344-358. [35] S.F. Robertson, A. Bandyopadhyay, S. Bose, Titania nanotube interface to increase adhesion strength of hydroxyapatite sol-gel coatings on Ti-6Al-4V for orthopedic applications, Surface & Coatings Technology 372 (2019) 140-147. [36] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebrukhov, P.S. Gordienko, S. Iwatsubo, A. Matsui, Composition and adhesion of protective coatings on aluminum, Surface & Coatings Technology 145(1-3) (2001) 146-151. [37] S. Verdier, M. Boinet, S. Maximovitch, F. Dalard, Formation, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodising, Corrosion Science 47(6) (2005) 1429-1444. [38] K.H. Dittrich, W. Krysmann, P. Kurze, H.G. Schneider, Structure and Properties of Anof Layers, Cryst Res Technol 19(1) (1984) 93-99. [39] X.Y. Liu, P.K. Chu, C.X. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science & Engineering R-Reports 47(3-4) (2004) 49-121. [40] C. Ma, D. Li, B. Jiang, H. Li, Study on surface bio-modification of titanium implant using microarc oxidation technology, Journal of the Fourth Military Medical University 25(1) (2004) 4-7. [41] K.A. Gross, L.M. Rodriguez-Lorenzo, Sintered hydroxyfluorapatites. Part 1: Sintering ability of precipitated solid solution powders, Biomaterials 25(7-8) (2004) 1375-1384. [42] K.A. Gross, L.M. Rodriguez-Lorenzo, Sintered hydroxyfluorapatites. Part II: Mechanical properties of solid solutions determined by microindentation, Biomaterials 25(7-8) (2004) 1385-1394. [43] Y.M. Chen, X.G. Miao, Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents, Biomaterials 26(11) (2005) 1205-1210. [44] E. Boanini, P. Torricelli, M. Gazzano, E. Della Bella, M. Fini, A. Bigi, Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses, Biomaterials 35(21) (2014) 5619-5626. [45] H. Qu, M. Wei, Effect of fluorine content on mechanical properties of sintered fluoridated hydroxyapatite, Materials Science & Engineering C-Biomimetic and Supramolecular Systems 26(1) (2006) 46-53. [46] H.B. Qu, M. Wei, The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior, Acta Biomaterialia 2(1) (2006) 113-119. [47] R.Z. LeGeros, Properties of osteoconductive biomaterials: Calcium phosphates, Clinical Orthopaedics and Related Research (395) (2002) 81-98. [48] J. Harrison, A.J. Melville, J.S. Forsythe, B.C. Muddle, A.O. Trounson, K.A. Gross, R. Mollard, Sintered hydroxyfluorapatites - IV: the effect of fluoride substitutions upon colonisation of hydroxyapatites by mouse embryonic stem cells, Biomaterials 25(20) (2004) 4977-4986. [49] S. Quideau, D. Deffieux, C. Douat-Casassus, L. Pouysegu, Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis, Angew Chem Int Edit 50(3) (2011) 586-621. [50] D.X. Oh, E. Prajatelistia, S.W. Ju, H.J. Kim, S.J. Baek, H.J. Cha, S.H. Jun, J.S. Ahn, D.S. Hwang, A rapid, efficient, and facile solution for dental hypersensitivity: The tannin-iron complex, Scientific Reports 5 (2015). [51] D. Huang, Q. Lin, M. Yin, Y. Wei, J. Du, Y. Hu, L. Zhao, X. Lian, W. Chen, Ag nanoparticles decorated electrospinning carbon nanotubes/polyamide nanofibers, Journal of Biomaterials Science-Polymer Edition 30(18) (2019) 1744-1755. [52] O. Al-Ketan, R.K. Abu Al-Rub, MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces, Material Design & Processing Communications 3(6) (2021) e205. [53] O. Al-Ketan, M.A. Assad, R.K. Abu Al-Ru, Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures, Compos Struct 176 (2017) 9-19. [54] O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Additive Manufacturing 19 (2018) 167-183. [55] D. Gu, Y. Shen, Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS, Journal of Alloys and Compounds 473(1-2) (2009) 107-115. [56] B. Schuh, B. Volker, J. Todt, N. Schell, L. Perriere, J. Li, J.P. Couzinie, A. Hohenwarter, Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties, Acta Materialia 142 (2018) 201-212. [57] C.-L. Li, C.-S. Wang, P.L. Narayana, J.-K. Hong, S.-W. Choi, J.H. Kim, S.W. Lee, C.H. Park, J.-T. Yeom, Q. Mei, Formation of equiaxed grains in selective laser melted pure titanium during annealing, Journal of Materials Research and Technology-Jmr&T 11 (2021) 301-311. [58] J. Tang, Z. Wu, X. Yao, Y. Zhou, Y. Xiong, Y. Li, J. Xu, M.S. Dargusch, M. Yan, From bio-inertness to osseointegration and antibacterial activity: A one-step micro-arc oxidation approach for multifunctional Ti implants fabricated by additive manufacturing, Materials & Design 221 (2022) 110962. [59] Z. Jia, P. Xiu, M. Li, X. Xu, Y. Shi, Y. Cheng, S. Wei, Y. Zheng, T. Xi, H. Cai, Z. Liu, Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses, Biomaterials 75 (2016) 203-222. [60] D. Huang, Q.X. Lin, Y.J. Zhou, J.X. Li, Y. Wei, Y.C. Hu, X.J. Lian, S. Chen, W.Y. Chen, Ag nanoparticles incorporated tannic acid/nanoapatite composite coating on Ti implant surfaces for enhancement of antibacterial and antioxidant properties, Surface & Coatings Technology 399 (2020). [61] G. He, B. Guo, H. Wang, C. Liang, L. Ye, Y. Lin, X. Cai, Surface characterization and osteoblast response to a functionally graded hydroxyapatite/fluoro-hydroxyapatite/titanium oxide coating on titanium surface by sol-gel method, Cell Proliferation 47(3) (2014) 258-266. [62] S.Y. Xu, J.D. Long, L.N. Sim, C.H. Diong, K. Ostrikov, RF plasma sputtering deposition of hydroxyapatite bioceramics: Synthesis, performance, and biocompatibility, Plasma Process Polym 2(5) (2005) 373-390. [63] R. Shi, Y. Huang, J. Zhang, C. Wu, M. Gong, W. Tian, L. Zhang, Effective delivery of mitomycin-C and meloxicam by double-layer electrospun membranes for the prevention of epidural adhesions, J. Biomed. Mater. Res. Part B 108(2) (2020) 353-366. [64] Z. Wei, P. Tian, X. Liu, B. Zhou, Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy, Colloids and Surfaces B-Biointerfaces 121 (2014) 451-460. [65] I.F.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': The FRAP assay, Anal Biochem 239(1) (1996) 70-76. [66] M. Sugano, Y. Tsuchida, T. Satake, M. Ikeda, A microstructural study of fatigue fracture in titanium-molybdenum alloys, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 243(1-2) (1998) 163-168. [67] J.R. Severino Martins Junior, R.A. Nogueira, R.O. de Araujo, T.A. Goto Donato, V.E. Arana-Chavez, A.P. Rosifini Alves Claro, J.C. Silos Moraes, M.A. Rabelo Buzalaf, C.R. Grandini, Preparation and Characterization of Ti-15Mo Alloy used as Biomaterial, Materials Research-Ibero-American Journal of Materials 14(1) (2011) 107-112. [68] W.-F. Ho, A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys, Journal of Alloys and Compounds 464(1-2) (2008) 580-583. [69] J.C. Tang, J.P. Luo, Y.J. Huang, J.F. Sun, Z.Y. Zhu, J.Y. Xu, M.S. Dargusch, M. Yan, Immunological response triggered by metallic 3D printing powders, Additive Manufacturing 35 (2020) 101392. [70] J.P. Luo, Y.J. Huang, J.Y. Xu, J.F. Sun, M.S. Dargusch, C.H. Hou, L. Ren, R.Z. Wang, T. Ebel, M. Yan, Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: Mechanical property, biocompatibility, and proteomics analysis, Materials Science and Engineering: C 114 (2020) 110903. [71] H. Cheng, Additive Manufacturing and Mechanical Properties of Functionally Graded Medical Ti–35Nb–7Zr–5Ta Porous Scaffolds, Journal of Physics: Conference Series 1986(1) (2021) 012036. [72] K. Jamuna-Thevi, S.A. Bakar, S. Ibrahim, N. Shahab, M.R.M. Toff, Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering, Vacuum 86(3) (2011) 235-241. [73] N. Wang, G.K. Meenashisundaram, D. Kandilya, J.Y.H. Fuh, S.T. Dheen, A.S. Kumar, A biomechanical evaluation on Cubic, Octet, and TPMS gyroid Ti6Al4V lattice structures fabricated by selective laser melting and the effects of their debris on human osteoblast-like cells, Biomaterials Advances 137 (2022). [74] B. Losiewicz, J. Maszybrocka, J. Kubisztal, G. Skrabalak, A. Stwora, Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes, Materials 14(1) (2021). [75] J. Tjandra, E. Alabort, D. Barba, S. Pedrazzini, Corrosion, fatigue and wear of additively manufactured Ti alloys for orthopaedic implants, Mater Sci Tech-Lond (2023). [76] M. Labieniec, T. Gabryelak, G. Falcioni, Antioxidant and pro-oxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus, Mutat Res-Gen Tox En 539(1-2) (2003) 19-28. [77] U.K. Parashar, V. Kumar, T. Bera, P.S. Saxena, G. Nath, S.K. Srivastava, R. Giri, A. Srivastava, Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles, Nanotechnology 22(41) (2011). [78] R.D. Luo, Y.X. Yuan, J.K. Ren, F. Li, Y.J. Yang, Z.Y. He, Y.H. Jiang, Novel function-structure-integrated Ti-Mo-Cu alloy combined with excellent antibacterial properties and mechanical compatibility as implant application, Journal of Alloys and Compounds 945 (2023). Chapter 5References [1] J. Xu, J. Zhang, Y. Shi, J. Tang, D. Huang, M. Yan, M.S. Dargusch, Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances, Materials 15(5) (2022) 1749. [2] A. International, Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700), 2017. [3] R.P. Kolli, D. Arun, A Review of Metastable Beta Titanium Alloys, Metals 8(7) (2018) 506. [4] A. International, Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications (UNS R58150), 2018. [5] M. Yan, M. Qian, C. Kong, M.S. Dargusch, Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit, Acta Biomaterialia 10(2) (2014) 1014-1023. [6] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Progress in Materials Science 54(3) (2009) 397-425. [7] M.L. dos Santos, C.D. Riccardi, E. de Almeida, A.C. Guastaldi, Calcium phosphates of biological importance based coatings deposited on Ti-15Mo alloy modified by laser beam irradiation for dental and orthopedic applications, Ceram. Int. 44(18) (2018) 22432-22438. [8] X. Min, P. Bai, S. Emura, X. Ji, C. Cheng, B. Jiang, K. Tsuchiya, Effect of oxygen content on deformation mode and corrosion behavior in beta-type Ti-Mo alloy, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 684 (2017) 534-541. [9] C.R. Hammond, Section 4: Properties of the Elements and Inorganic Compounds, in: C.R. Hammond (Ed.), CRC Handbook of Chemistry and Physics, CRC Press2005, pp. 41-42. [10] P. Xu, F. Pyczak, M. Yan, F. Kong, T. Ebel, Impacts of yttrium on microstructure and tensile properties of biomedical beta Ti-Nb-Zr fabricated by metal injection molding, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 792 (2020). [11] W.P. Li, H. Wang, Y.H. Zhou, Y.Y. Zhu, S.F. Lin, M. Yan, N. Wang, Yttrium for the selective laser melting of Ti-45Al-8Nb intermetallic: Powder surface structure, laser absorptivity, and printability, Journal of Alloys and Compounds 892 (2022). [12] Y. Alshammari, F. Yang, L. Bolzoni, Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material, Journal of the Mechanical Behavior of Biomedical Materials 95 (2019) 232-239. [13] L. Fowler, N. Masia, L.A. Cornish, L.H. Chown, H. Engqvist, S. Norgren, C. Ohman-Magi, Development of Antibacterial Ti-Cu-x Alloys for Dental Applications: Effects of Ageing for Alloys with Up to 10 wt% Cu, Materials 12(23) (2019). [14] A. Shi, C. Zhu, S. Fu, R. Wang, G. Qin, D. Chen, E. Zhang, What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles?, Mater. Sci. Eng. C-Mater. Biol. Appl. 109 (2020). [15] Z. Lei, H. Zhang, E. Zhang, J. You, X. Ma, X. Bai, Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching, Mater. Sci. Eng. C-Mater. Biol. Appl. 92 (2018) 121-131. [16] X.Y. Zhang, H.Z. Wang, J.F. Li, X.J. He, R.Q. Hang, X.B. Huang, L.H. Tian, B. Tang, Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium, Ceram. Int. 42(15) (2016) 17095-17100. [17] Q. Li, L. Li, M. Zhao, L. Dong, J. Wu, D. Li, Biological actions of Cu/Zn coimplanted TiN on Ti-6Al-4V alloy, Biointerphases 14(5) (2019). [18] G. McDonnell, A.D. Russell, Antiseptics and disinfectants: Activity, action, and resistance, Clinical Microbiology Reviews 12(1) (1999) 147-+. [19] Z. Lei, H. Zhang, E. Zhang, J. You, X. Ma, X. Bai, Antibacterial activities and cell responses of Ti-Ag alloys with a hybrid micro- to nanostructured surface, Journal of Biomaterials Applications 34(10) (2020) 1368-1380. [20] E. Zhang, C. Liu, Effect of surface treatments on the surface morphology, corrosion property, and antibacterial property of Ti-10Cu sintered alloy, Biomedical Materials 10(4) (2015). [21] C. Ning, X. Wang, L. Li, Y. Zhu, M. Li, P. Yu, L. Zhou, Z. Zhou, J. Chen, G. Tan, Y. Zhang, Y. Wang, C. Mao, Concentration Ranges of Antibacterial Cations for Showing the Highest Antibacterial Efficacy but the Least Cytotoxicity against Mammalian Cells: Implications for a New Antibacterial Mechanism, Chemical Research in Toxicology 28(9) (2015) 1815-1822. [22] Y.H. Zhou, W.P. Li, D.W. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, M. Yan, Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated, Acta Materialia 173 (2019) 117-129. [23] Y.H. Zhou, S.F. Lin, Y.H. Hou, D.W. Wang, P. Zhou, P.L. Han, Y.L. Li, M. Yan, Layered surface structure of gas-atomized high Nb-containing TiAl powder and its impact on laser energy absorption for selective laser melting, Applied Surface Science 441 (2018) 210-217. [24] S. Guo, Y. Lu, S. Wu, L. Liu, M. He, C. Zhao, Y. Gan, J. Lin, J. Luo, X. Xu, J. Lin, Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys, Mater. Sci. Eng. C-Mater. Biol. Appl. 72 (2017) 631-640. [25] B.B. Zhang, B.L. Wang, Y.B. Wang, L. Li, Y.F. Zheng, Y. Liu, Development of Ti-Ag-Fe ternary titanium alloy for dental application, J. Biomed. Mater. Res. Part B 100B(1) (2012) 185-196. [26] S. Maharubin, Y. Hu, D. Sooriyaarachchi, W. Cong, G.Z. Tan, Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys, Mater. Sci. Eng. C-Mater. Biol. Appl. 105 (2019). [27] Y.P. Dong, Y.L. Li, S.Y. Zhou, Y.H. Zhou, M.S. Dargusch, H.X. Peng, M. Yan, Cost-affordable Ti-6Al-4V for additive manufacturing: Powder modification, compositional modulation and laser in-situ alloying, Additive Manufacturing 37 (2021). [28] M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, In-situ alloying in laser-based additive manufacturing processes: A critical review, Journal of Alloys and Compounds 872 (2021). [29] P. Chen, S. Li, Y. Zhou, M. Yan, M.M. Attallah, Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying, Journal of Materials Science & Technology 43 (2020) 40-43. [30] S.L. Sing, S. Huang, G.D. Goh, G.L. Goh, C.F. Tey, J.H.K. Tan, W.Y. Yeong, Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion, Progress in Materials Science 119 (2021). [31] Y. Hou, B. Liu, Y. Liu, Y. Zhou, T. Song, Q. Zhou, G. Sha, M. Yan, Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated, Opto-Electronic Advances 2(5) (2019). [32] Y.P. Dong, J.C. Tang, D.W. Wang, N. Wang, Z.D. He, J. Li, D.P. Zhao, M. Yan, Additive manufacturing of pure Ti with superior mechanical performance, low cost, and biocompatibility for potential replacement of Ti-6Al-4V, Materials & Design 196 (2020). [33] Y. Dong, Y. Li, T. Ebel, M. Yan, Cost-affordable, high-performance Ti-TiB composite for selective laser melting additive manufacturing, J. Mater. Res. 35(15) (2020) 1922-1935. [34] D.W. Wang, Y.H. Zhou, X.Y. Yao, Y.P. Dong, S.H. Feng, Z.Y. Liu, H. Wang, M. Yan, Inheritance of microstructure and mechanical properties in laser powder bed fusion additive manufacturing: A feedstock perspective, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 832 (2022). [35] J.C. Tang, J.P. Luo, Y.J. Huang, J.F. Sun, Z.Y. Zhu, J.Y. Xu, M.S. Dargusch, M. Yan, Immunological response triggered by metallic 3D printing powders, Additive Manufacturing 35 (2020) 101392. [36] J.P. Luo, Y.J. Huang, J.Y. Xu, J.F. Sun, M.S. Dargusch, C.H. Hou, L. Ren, R.Z. Wang, T. Ebel, M. Yan, Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: Mechanical property, biocompatibility, and proteomics analysis, Materials Science and Engineering: C 114 (2020) 110903. [37] K. Persson, Materials Data on Ti (SG:194) by Materials Project, 2016. (Accessed May 1 2022). [38] W.-F. Ho, A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys, Journal of Alloys and Compounds 464(1-2) (2008) 580-583. [39] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A 243(1) (1998) 231-236. [40] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Titanium Alloys Manufactured by In Situ Alloying During Laser Powder Bed Fusion, Jom 69(12) (2017) 2725-2730. [41] M. Sugano, Y. Tsuchida, T. Satake, M. Ikeda, A microstructural study of fatigue fracture in titanium-molybdenum alloys, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 243(1-2) (1998) 163-168. [42] J.R. Severino Martins Junior, R.A. Nogueira, R.O. de Araujo, T.A. Goto Donato, V.E. Arana-Chavez, A.P. Rosifini Alves Claro, J.C. Silos Moraes, M.A. Rabelo Buzalaf, C.R. Grandini, Preparation and Characterization of Ti-15Mo Alloy used as Biomaterial, Materials Research-Ibero-American Journal of Materials 14(1) (2011) 107-112. [43] K.J. Mieczyslaw Jurczyk, Biomaterials, in: M. Jurczyk (Ed.), Bionanomaterials for dental applications, Jenny Stanford Publishing, New York, 2012. [44] F.H. Duan, Y. Lin, J. Pan, Y.X. Wang, J.H. Yao, Y. Li, Influence of oxygen on the glass formation of Mo-O binary alloys, Journal of Non-Crystalline Solids 500 (2018) 210-216. [45] X. Ma, Z. Chen, D. Zhong, S.N. Luo, L. Xiao, W. Lu, S. Zhang, Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable beta titanium alloy, Journal of Materials Science & Technology 75 (2021) 27-38. [46] G. Folaranmi, M. Tauk, M. Bechelany, P. Sistat, M. Cretin, F. Zaviska, Synthesis and Characterization of Activated Carbon Co-Mixed Electrospun Titanium Oxide Nanofibers as Flow Electrode in Capacitive Deionization, Materials 14(22) (2021). [47] J.-C. Lee, A.-I. Gopalan, G. Saianand, K.-P. Lee, W.-J. Kim, Manganese and Graphene Included Titanium Dioxide Composite Nanowires: Fabrication, Characterization and Enhanced Photocatalytic Activities, Nanomaterials 10(3) (2020). [48] I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, Single track formation in selective laser melting of metal powders, J Mater Process Tech 210(12) (2010) 1624-1631. [49] G. Matsui, H. Kato, Analysis of thermal diffusivity of Ti thin film by thermoreflectance and periodic heating technique, Review of Scientific Instruments 82(3) (2011). [50] E. Edge, Thermal Diffusivity Table, 2022. https://www.engineersedge.com/heat_transfer/thermal_diffusivity_table_13953.htm. (Accessed 14 Aug 2022). [51] A. Technologies, Microsoft Word - ati_15Mo_Titanium_Alloy_en_v4 final, 2014. https://www.atimaterials.com/Products/Documents/datasheets/titanium/alloyed/ati_15Mo_Titanium_Alloy_en_v4%20final.pdf. (Accessed 8 Mar 2022). [52] MakeItFrom, UNS R58150 Titanium (Ti-15Mo) :: MakeItFrom.com, 2018. https://www.makeitfrom.com/material-properties/UNS-R58150-Titanium-Ti-15Mo. (Accessed 14 Aug 2022). [53] L. Wang, H. Wang, Y. Liu, Z. Fu, T. Peng, J. Shen, S. Zhou, M. Yan, G. Wang, Y. Dai, Selective laser melting helps fabricate record-large bulk metallic glass: Experiments, simulation and demonstrative part, Journal of Alloys and Compounds 808 (2019). [54] D.W. Lynch, W.R. Hunter, - Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals, in: E.D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic Press, Burlington, 1997, pp. 275-367. [55] D.W. Lynch, W.R. Hunter, - Introduction to the Data for Several Metals, in: E.D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic Press, Burlington, 1997, pp. 233-286. [56] M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed fusion, Additive Manufacturing 14 (2017) 39-48. [57] J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, M.J. Matthews, Energy Coupling Mechanisms and Scaling Behavior Associated with Laser Powder Bed Fusion Additive Manufacturing, Advanced Engineering Materials 21(7) (2019). [58] J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting, Progress in Additive Manufacturing 2(3) (2017) 157-167. [59] J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6A1-4V alloy, Materials & Design 110 (2016) 558-570. [60] R.N. Gu, P. Chen, Y.H. Zhou, H. Wang, X.C. Yan, K.S. Wong, M. Yan, Intentional Oxidation and Laser Remelting of Highly Reflective Pure Cu for Its High-Quality Additive Manufacturing, Advanced Engineering Materials (2021). [61] J. Liu, P. Wen, Metal vaporization and its influence during laser powder bed fusion process, Materials & Design 215 (2022). [62] S. Cui, S. Liu, J. Nie, D. Chen, X. Wu, G. Qin, E. Zhang, Design and preparation of a biomedical titanium alloy with low elastic modulus and high antibacterial property based on Ti-Mo-Ag system, Journal of Alloys and Compounds 908 (2022) 164639. [63] D. Cai, X. Zhao, L. Yang, R. Wang, G. Qin, D.-f. Chen, E. Zhang, A novel biomedical titanium alloy with high antibacterial property and low elastic modulus, Journal of Materials Science & Technology 81 (2021) 13-25. [64] M. Chen, L. Yang, L. Zhang, Y. Han, Z. Lu, G. Qin, E. Zhang, Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys, Mater. Sci. Eng. C-Mater. Biol. Appl. 75 (2017) 906-917. [65] M. Lu, Z. Zhang, J. Zhang, X. Wang, G. Qin, E. Zhang, Enhanced antibacterial activity of Ti-Cu alloy by selective acid etching, Surface & Coatings Technology 421 (2021). [66] Y.-H. Chang, C.-Y. Chao, Y.-T. Chang, J.-K. Du, Effect of Phase Distribution on the Antibacterial Property and Cytotoxicity of Ti-5Al-2.5Cu Alloy after Heat Treatment at Various Temperatures, Metals 10(7) (2020). [67] M.B. Sedelnikova, E.G. Komarova, Y.P. Sharkeev, A.V. Ugodchikova, L.S. Mushtovatova, M.R. Karpova, V.V. Sheikin, L.S. Litvinova, I.A. Khlusov, Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media, Surface & Coatings Technology 369 (2019) 52-68. [68] R. Wang, Y. Tang, S. Li, Y. Ai, Y. Li, B. Xiao, L.a. Zhu, X. Liu, S. Bai, Effect of lattice distortion on the diffusion behavior of high-entropy alloys, Journal of Alloys and Compounds 825 (2020). [69] A. Roy, P. Sreeramagiri, T. Babuska, B. Krick, P.K. Ray, G. Balasubramanian, Lattice distortion as an estimator of solid solution strengthening in high-entropy alloys, Materials Characterization 172 (2021). [70] J. Xu, Y. Ding, Y. Gao, H. Wang, Y. Hu, D. Zhang, Grain refinement and crack inhibition of hard-to-weld Inconel 738 alloy by altering the scanning strategy during selective laser melting, Materials & Design 209 (2021). [71] W. Xiong, L. Hao, T. Peijs, C. Yan, K. Cheng, P. Gong, Q. Cui, D. Tang, S. Al Islam, Y. Li, Simultaneous strength and ductility enhancements of high thermal conductive Ag7.5Cu alloy by selective laser melting, Scientific Reports 12(1) (2022).Chapter 6 References [1] J.C. Wang, Y.J. Liu, S.X. Liang, Y.S. Zhang, L.Q. Wang, T.B. Sercombe, L.C. Zhang, Comparison of microstructure and mechanical behavior of Ti-35Nb manufactured by laser powder bed fusion from elemental powder mixture and prealloyed powder, Journal of Materials Science & Technology 105 (2022) 1-16. [2] S. Spriano, S. Yamaguchi, F. Baino, S. Ferraris, A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination, Acta Biomaterialia 79 (2018) 1-22. [3] M.C.R. Symons, Radicals generated by bone cutting and fracture, Free Radical Bio Med 20(6) (1996) 831-835. [4] W.Z. Chen, X.K. Shen, Y. Hu, K. Xu, Q.C. Ran, Y.L. Yu, L.L. Dai, Z. Yuan, L. Huang, T.T. Shen, K.Y. Cai, Surface functionalization of titanium implants with chitosan-catechol conjugate for suppression of ROS-induced cells damage and improvement of osteogenesis, Biomaterials 114 (2017) 82-96. [5] X.F. Hu, L. Wang, Y.Z. Lu, G. Xiang, Z.X. Wu, Y.B. Yan, Y. Zhang, X. Zhao, Y. Zang, L. Shi, W. Lei, Y.F. Feng, Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro, Acta Biomaterialia 61 (2017) 233-248. [6] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Titanium Alloys Manufactured by In Situ Alloying During Laser Powder Bed Fusion, Jom 69(12) (2017) 2725-2730. [7] T.C. Dzogbewu, W.B. Du Preez, In situ alloying of Ti10Mo fused tracks and layers via laser powder bed fusion, Manuf Rev 9 (2022). [8] R.X. Duan, S. Li, B. Cai, Z. Tao, W.W. Zhu, F.Z. Ren, M.M. Attallah, In situ alloying based laser powder bed fusion processing of beta Ti-Mo alloy to fabricate functionally graded composites, Compos Part B-Eng 222 (2021). Appendix A. Other publication during candidatureReferences [1] L. Ottria, D. Lauritano, B. M. Andreasi, A. Palmieri, V. Candotto, A. Tagliabue, L. Tettamanti. Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry. Journal of Biological Regulators and Homeostatic Agents. 32(2) (2018) 81-90. [2] M. H. Muhanad, W. H. Xiao, A. Ahmad, W. Jason, W. David. Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dental Materials. 34(4) (2018) 676-683. [3] M. Niinomia, T. Akahorib, S. Katsurac, K. Yamauchid, M. Ogawa. Mechanical characteristics and microstructure of drawn wire of Ti–29Nb–13Ta–4.6Zr for biomedical applications, Materials Science and Engineering: C. 27(1) (2017) 154-161. [4] Y. Guo, D. Chen, W. Lu, Y. Jia, L. Wang, X. Zhang. Corrosion resistance and in vitro response of a novel Ti35Nb2Ta3Zr alloy with a low Young's modulus. Biomedical Materials. 8(5) (2013) 55-64. [5] D.R. Sumner. Long-term implant fixation and stress-shielding in total hip replacement. Journal of Biomechanics. 48(5) (2015) 797-800. [6] H. Fouad. Assessment of function-graded materials as fracture fixation bone-plates under combined loading conditions using finite element modelling. Medical Engineering and Physics. 33(4) (2011) 456-463. [7] A. Ataee, Y.C. Li, D. Fraser, G.S. Song, C.E. Wen. Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications, Materials & Design. 137 (2018) 345-354. [8] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - a review, Progress in Materials Science. 54 (3) (2009) 397–425. [9] W. Yu, Z. Juan, D. J. Shi, C. Feng, Y. Q. Xin, Z. F.You, Influence of cold rolling and ageing treatment on microstructure and mechanical properties of Ti–30Nb–5Ta–6Zr alloy. Journal of the Mechanical Behavior of Biomedical Materials. 27 (2013) 33-42. [10] H. Fujisawa, Y. Mori, A. Kogure, H. Tanaka, M. Kamimura, N. Masahashi, S. Hanada, E. Itoi. Effects of intramedullary nails composed of a new β-type Ti-Nb-Sn alloy with low Young's modulus on fracture healing in mouse tibiae. Journal of Biomedical Materials Research: B. 106 (2018) 2841-2848. [11] S. Arabnejad, B. Johnston, M. Tanzer, D. Pasini. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research. 35 (2017) 1774-1783. [12] N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, H. Toda. Effects of Ta and Zr contents on microstructure, tensile properties and elastic modulus of Ti-Nb-Ta-Zr system alloys, Journal of the Japan Institute of Metals. 68(12) (2004) 1076-1082. [13] N. Liu, G.Y. Yang, L. Jia. Study on Partition Melting Scanning Forming Process of Selective Electron Beam Melting with Ti-5Ta-30Nb-8Zr alloy. Titanium Industry Progress. 35(4) (2018) 12–16. [14] E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, R. Caram. Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys, Materials characterization. 62 (2011) 673–680. [15] P. J. Bania. Beta Titanium Alloys and Their Role in the Titanium Industry, Journal of the minerals metals & materials society. 7 (1994) 16–19. [16] Q. Li, Q. Wang, C. Dong, Y.M. Wang, J.B. Qiang. Composition Design Methods of Metastable β-Ti Alloys, Titanium Industry Progress. 30(5) (2013) 1–5. [17] D. Q. Martins, W. R. Osorio, M. E.P. Souza, R. Caram, A. Garcia. Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications, Electrochimica Acta. 53 (2008) 2809–2817. [18] D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie, Predicting the formation and stability of single phase high-entropy alloys, Acta Materialia 104 (2016) 172-179. [19] K.C. Nune, A. Kumar, R.D. K. Misra, S.J. Li, Y. L. Hao, R. Yang. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing. Colloids and Surfaces B: Biointerfaces. 150 (2017) 78-88. [20] T. Kokubo, S. Yamaguchi, Novel bioactive materials developed by simulated body flfluid evaluation: Surface-modifified Ti metal and its alloys, Acta Biomaterialia 44 (2016) 16–30. [21] T. Billiet, E. Gevaert, T. D. Schryver, M. Cornelissen, P. Dubruel. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability, Biomaterials. 35(2014) 49-62. [22] V.S. Deshpande, N.A. Fleck, M.F. Ashby. Effective properties of the octet-truss lattice material, Journal of the Mechanics and Physics of Solids. 49 (2001) 1747-1769. [23] S. McKown, Y. Shen, W.K. Brookes, C.J. Sutcliffe, W.J. Cantwell, G.S. Lagdon, G. N. Nurick, M. D. Theobald, The quasi-static and blast loading response of lattice structures, International Journal of Impact Engineering. 35(2008) 795-810. [24] B. Gorny, T. Niendorf, J. Lackmann, M. Thoene, T. Troester, H.J. Maier. In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting, Material Science and Engineering. A. 528 (2011) 7962-7967. [25] S. Simske, R. Ayers, T. Bateman, Porous materials for bone engineering, Materials Science Forum. 250 (1997) 151-182. [26] A. Kumar, T.J. Webster, K. Biswas, B. Basu, Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered Hydroxyapatite-Titanium biocomposites, Journal of Biomedical Materials Research: A. 101(2013) 2925-2938. [27] E.A. Dubiel, Y. Martin, P. Vermette. Bridging the gap between physicochemistry and interpretation prevalent in cell-surface interactions, Chemical Reviews. 111 (2011) 2900-2936. [28] H.Q. Lei, R. Kalluri, E.E. Furth, A.H. Baker, J. F. Strauss. Rat amnion type IV collagen composition and metabolism: implications for membrane breakdown, Biology of Reproduction. 60 (1999) 176-182. [29] S.S. Silva, S.M. Luna, M.E. Gomes, J. Benesch, I. Pashkuleva, J.F. Mano, R.L. Reis. Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies, Macromolecular Bioscience. 8 (2008) 568-576. [30] D.Y. Yang, X.Y. Lü, Y. Hong, T.F. Xi, D.Y. Zhang. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials, Biomaterials. 34 (2013) 5747-5758. [31] R. Nicula, F. Lüthen, M. Stir, B. Nebe, E. Burkel. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Acta Biomaterialia. 24 (2007) 564-567. [32] F.Y. Yasenchuk, N.V. Artyukhova, V.A. NovikovV, E. Gyunter. Participation of gases in the surface formation during self-propagating high-temperature synthesis of porous nickel titanium. Technical Physics Letters. 40 (2014) 697-700. [33] L.C. Zhang, H. Attar, Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review, Advanced Engineering Materials. 18 (2016) 463–475. [34] Y.H. Zhou, Z.H. Zhang, Y.P. Wang, G. Liu, S.Y. Zhou, Y.L. Li, J. Shen, M. Yan, Selective laser melting of typical metallic materials: an effective process prediction model developed by energy absorption and consumption analysis, Additive Manufacturing. 25 (2019) 204–217. [35] H. Azizi, H. Zurob, B. Bose, S.R. Ghiaasiaan, X. Wang, S. Coulson, V.Duz, A. B. Phillion, Additive manufacturing of a novel Ti-Al-V-Fe alloy using selective laser melting, Additive Manufacturing. 21 (2018) 529-535. [36] Y.H. Zhou, Y.H. Zhou, W.P. Li, D.W. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, M. Yan, Selective laser melting enabled additive manufacturing of Ti–22Al–25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated, Acta Materialia, 173 (2019) 117-129. [37] M. Leary, M. Mazur, J. Elambasseril, M. McMillan, T. Chirent, Y.Y. Sun, M. Qian, M. Easton, M. Brandt, Selective laser melting (SLM) of AlSi12Mg lattice structures. Materials & Design. 98 (2016) 344-357 . [38] K. Kadirgama, W. S. W. Harun, F. Tarlochan, M. Samykano, D. Ramasamy, Mohd Zaidi Azir, H. Mehboob. Statistical and optimize of lattice structures with selective laser melting (SLM) of Ti6AL4V material, The International Journal of Advanced Manufacturing Technology. 97 (2018) 495-510. [39] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro. Design and mechanical properties of new b type titanium alloys for implant materials, Materials Science and Engineering A 243 (1998) 244–249. [40] D.Y. Yang, X.Y. Lü, Y. Hong, T.F. Xi, D.Y. Zhang. The molecular mechanism for effects of TiN coating on NiTi alloy on endothelial cell function, Biomaterials. 35 (2014) 6195-6205. [41] J. P. Luo, J. F. Sun, Y. J. Huang, J. H. Zhang, Y. D. Zhang, D. P. Zhao, M. Yan. Low-modulus biomedical Ti-30Nb-5Ta-3Zr additively manufactured by Selective Laser Melting and its biocompatibility, Materials Science and Engineering: C. 97 (2019) 275-284. [42] V. Cnudde, A. Cwirzen, B. Masschaele, P.J. S. Jacobs. Porosity and microstructure characterization of building stones and concretes, Engineering Geology. 103 (2009) 76-83. [43] J.P. Luo, X. Jia, R.N. Gu, P. Zhou, Y.J. Huang, J.F. Sun, M. Yan. 316L Stainless Steel Manufactured by Selective Laser Melting and Its Biocompatibility with or without Hydroxyapatite Coating, Metals. 8 (2018) 548. [44] T.W. Chung, D.Z. Liu, S.Y. Wang, S.S. Wang. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24 (2003) 4655–4661. [45] K. Shimizu, J. K. Hicks, T. P. Huang, N. P. Keller. Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans, Genetics. 165 (2003) 1095-104. [46] Y.H. Zhou, Z.H. Zhang, Y.P. Wang, G. Liu, S.Y. Zhou, Y.L. Li, J. Shen, M. Yan, Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis, Additive Manufacturing 25 (2019) 204-217. [47] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications, Applied Physics Reviews 2(4) (2015) 041101. [48] R.P. Kolli, D. Arun, A Review of Metastable Beta Titanium Alloys, Metals 8(7) (2018) 506. [49] Y.H. Hou, B. Liu, Y. Liu, Y. Zhou, T. Song, Q. Zhou, G. Sha, M. Yan, Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated, Opto-Electronic Advances. 2 (2019) 1–8. [50] L.J. Xiao, W. D. Song, C. Wang, H. P. Liu, H. P. Tang, J. Z. Wang. Mechanical behavior of open-cell rhombic dodecahedron Ti-6Al-4V lattice structure, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 640 (2915) 375-384. [51] L.J. Xiao, W.D. Song, C. Wang, H.P. Tang, N. Liu, J.Z. Wang. Yield behavior of open-cell rhombic dodecahedron Ti-6Al-4V lattice at elevated temperatures, International Journal of Mechanical Sciences. 115 (2016) 310-317. [52] S.M. H. Hosseini, M. Merkel, A. Ochsner. Influence of the joint shape on the uniaxial mechanical properties of non-homogeneous bonded perforated hollow sphere structures, Computational Materials Science. 58 (2012) 183-187. [53] Y.B. Fu, J. Zhou, X.S. Gao. Design and numerical simulation of a new sandwiched sphere structure for ballistic protection, International Journal of Impact Engineering. 58 (2013) 66-75. [54] Y.J. Li, X.P. Li, L.C. Zhang, T.B. Sercombe, Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting, Materials Science and Engineering: A. 642 (2015) 268-278. [55] N.E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Pearson, USA, 2012. [56] L.J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials, Proc. R. Soc. Lond. A 382 (1982) 43-59. [57] K. D. Pithia. A note on the ashby-gibson relation, Computers & Structures. 52 (1994) 365-366. [58] A.G. Evans, J.W. Hutchinson, M. F. Ashby. Cellular metals, Current Opinion in Solid State and Materials Science. 3 (1998) 288-303. [59] K. Zhuravleva, A. Chivu, A. Teresiak, S. Scudino, M. Calin, L. Schultz, J. Eckert, A. Gebert, Porous low modulus Ti40Nb compacts with electrodeposited hydroxyapatite coating for biomedical applications, Mater. Sci. Eng. C-Mater. Biol. Appl. 33(4) (2013) 2280-2287. [60] D. Leonetti, M. Johan, S.H. H. Bert. Fitting fatigue test data with a novel S-N curve using frequentist and Bayesian inference, International Journal of Fatigue. 105 (2017) 128-143. [61] D. Taylor, Fatigue of bone and bones: An analysis based on stressed volume, Journal of Orthopaedic Research 16(2) (1998) 163-169. [62] D.R. Carter, W.E. Caler, D.M. Spengler, V.H. Frankel, UNIAXIAL FATIGUE OF HUMAN CORTICAL BONE – THE INFLUENCE OF TISSUE PHYSICAL CHARACTERISTICS, Journal of Biomechanics 14(7) (1981) 461-470. [63] B. van Hooreweder, Y. Apers, K. Lietaert, J.P. Kruth, Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting, Acta Biomaterialia 47 (2017) 193-202. [64] P. Edwards, M. Ramulu, Fatigue performance evaluation of selective laser melted Ti-6Al-4V, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 598 (2014) 327-337. [65] J. Gunther, D. Krewerth, T. Lippmann, S. Leuders, T. Troster, A. Weidner, H. Biermann, T. Niendorf, Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime, International Journal of Fatigue 94 (2017) 236-245. [66] A. Yadollahi, N. Shamsaei, Additive manufacturing of fatigue resistant materials: Challenges and opportunities, International Journal of Fatigue 98 (2017) 14-31. [67] S. Romano, A. Bruckner-Foit, A. Brandao, J. Gumpinger, T. Ghidini, S. Beretta, Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength, Engineering Fracture Mechanics 187 (2018) 165-189. [68] Additive Manufacturing Technology Standards, [Accessed: 01-June-2019] https://www.astm.org/Standards/additive-manufacturing-technology-standards.html. [69] [70] L.J. Gibson, M.F. Ashby, Cancellous bone, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1997, pp. 429-452. [71] Standardization Administration of the P. R. C., Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity, 2017, [Accessed: 01-June-2019] http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=7867688D406CE93B6744F52241EAF359. [72] B.W. Schafer, C.W. Heizmann, The S100 family of EF-hand calcium-binding proteins: Functions and pathology, Trends in Biochemical Sciences, 21 (1996) 134-140 . [73] A. Tadimalla, P. J. Belmont, D. J. Thuerauf, M. S. Glassy, J. J. Martindale, N. Gude, M. A. Sussman, C. C. Glembotski. Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart, Circulation research. 103 (2008) 1249-1258. [74] X. Fu, M.J. Zhu, M.V. Dodson, M. Du, AMP-activated Protein Kinase Stimulates Warburg-like Glycolysis and Activation of Satellite Cells during Muscle Regeneration. Journal of Biological Chemistry. 290 (2015) 26445-26456. [75] S. Buonamici, T. Trimarchi, M. G. Ruocco, L. Reavie, S. Cathelin, B. G. Mar, A. Klinakis, Y. Lukyanov, J. C. Tseng, F. Sen, E. Gehrie, M. L. Li, E. Newcomb, J. Zavadil, D. Meruelo, M. Lipp, S. Ibrahim, A. Efstratiadis, D. Zagzag, J. S. Bromberg, M. L. Dustin, I. Aifantis. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia, Nature. 459 (2009) 1000-1004. [76] K.K. Shen, L.L. Ji, C.Y. Gong, Y.B. Ma, L. Yang, Y. Fan, M. Q. Hou, Z. T. Wang. Notoginsenoside Ft1 promotes angiogenesis via HIF-1α mediated VEGF secretion and the regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways, Biochemical Pharmacology. 84 (2012) 784-792. [77] B.K. Robbs, P.I. Lucena, J.P. B. Viola. The transcription factor NFAT1 induces apoptosis through cooperation with Ras/Raf/MEK/ERK pathway and upregulation of TNF-α expression, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1833 (2013) 2016-2028. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549447 |
专题 | 工学院_材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Xu JY. Bulk and porous Ti alloys produced by selective laser melting for biomedical applications[D]. 昆士兰大学. 昆士兰大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11863002- 徐婧媛 -材料科学与(20660KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[徐婧媛]的文章 |
百度学术 |
百度学术中相似的文章 |
[徐婧媛]的文章 |
必应学术 |
必应学术中相似的文章 |
[徐婧媛]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论