中文版 | English
题名

RNA编辑酶ADAR1在体液免疫反应中的作用及机制研究

其他题名
FUNCTION AND MECHANISM OF RNA EDITING ENZYME ADAR1 IN HUMORAL IMMUNE RESPONSE
姓名
姓名拼音
liyuxing
学号
11849500
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
欧西军
导师单位
基础免疫与微生物学系
论文答辩日期
2022-12-06
论文提交日期
2023-08-03
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

体液免疫是由抗体介导的细胞间质中抗原的清除过程,属于机体免疫系统的重要组成部分。在体液免疫反应中B细胞被抗原激活并分化为浆细胞和记忆B细胞。浆细胞具有独特的细胞结构,可大量合成并分泌抗体,抗体将介导病原体的清除过程。记忆B细胞长期存在于体内,当机体再次遭遇同种抗原时被迅速激活并对抗原做出快速高效的响应。当B细胞激活和分化发生异常时会导致免疫缺陷、自身免疫疾病以及淋巴瘤的发生,因此,在体液免疫反应中B细胞的激活和分化受到严格的调控。研究B细胞活化和分化调控机制对于病原体感染和自身免疫疾病的治疗以及疫苗设计具有重要的指导意义。RNA腺苷脱氨酶1(ADAR1)是主要的对双链RNA上腺苷进行脱氨基修饰的酶,近年来大量研究报道了ADAR1在细胞天然免疫反应、B细胞和T细胞等免疫细胞的发育过程中发挥了重要调控作用。然而ADAR1在B细胞活化及体液免疫反应过程中的作用及机制还需要进一步研究。

为了探究ADAR1在B细胞活化和免疫反应过程中的功能,本文利用Cre-loxP基因条件性敲除系统构建了在小鼠B细胞中特异性敲除ADAR1的转基因小鼠。ADAR1的敲除导致小鼠生发中心反应减弱,进而导致生发中心反应下游记忆B细胞和发生免疫球蛋白基因类别转换重组的抗体分泌细胞分化受阻。然而ADAR1的敲除却增强了小鼠免疫反应早期浆母细胞的分化。因此,ADAR1在活化B细胞向生发中心B细胞和浆母细胞分化过程中发挥了重要的调控作用。

已有研究表明ADAR1通过作用于细胞内源RNA而抑制MDA5、PKR和RNase L的异常激活,为了确定MDA5、PKR和RNase L通路在ADAR1条件性敲除小鼠免疫反应中的作用,本文构建了在B细胞中条件性敲除ADAR1并分别敲除MDA5、PKR和RNase L的转基因小鼠。结果显示MDA5的敲除可以部分回补ADAR1条件性敲除小鼠生发中心B细胞减少的表型,但是不能回补记忆B细胞和浆细胞分化减弱的表型,而且MDA5的敲除也不能回补ADAR1条件性敲除小鼠浆母细胞分化增强的表型,PKR和RNase L的敲除对ADAR1敲除小鼠免疫反应的表型没有回补作用。表明ADAR1在体液免疫反应中的作用不依赖PKR和RNase L,在调控生发中心B细胞形成过程中部分依赖MDA5。

ADAR1蛋白主要存在两个变体—ADAR1 p150和ADAR1 p110,ADAR1 p150主要分布在细胞质中而ADAR1 p110主要分布在细胞核中。研究表明两个变体在小鼠不同的组织器官发育中具有不同的功能。为了探究ADAR1 p150和ADAR1 p110在体液免疫反应中的功能,本文利用Cre-loxP系统构建了ADAR1条件性敲除并且同时条件性敲入ADAR1 p150或ADAR1 p110变体的转基因小鼠。结果显示ADAR1 p150的敲入可以完全回补ADAR1敲除小鼠体液免疫反应的表型,而ADAR1 p110的敲入不能回补ADAR1敲除小鼠体液免疫反应的表型。表明ADAR1 p150变体在体液免疫反应中发挥了主导功能。

为了探究ADAR1 p150调控小鼠生发中心反应的机制,本文通过小鼠骨髓细胞重构和移植方法,在ADAR1条件性敲除小鼠骨髓细胞中分别高表达ADAR1 p150 Zα结构域、双链RNA结合结构域和催化脱氨基结构域突变的3种突变基因以及N端带有核输出信号的ADAR1 p110融合基因。通过检测不同ADAR1突变体在生发中心反应中的功能发现ADAR1 p150 Zα结构域和双链RNA结合结构域的突变使ADAR1 p150蛋白在小鼠生发中心反应中丧失功能,而且核输出型ADAR1 p110在小鼠生发中心反应中依然没有功能。结果表明ADAR1 p150在生发中心反应中发挥功能依赖Zα结构域和双链RNA结合结构域,同时Zα结构域和双链RNA结合结构域在功能上具有协同作用。

通过转录组测序分析发现ADAR1的缺失导致活化B细胞中与细胞分化相关的基因表达异常,包括调控B细胞分化的核心转录因子Blimp-1、IRF4、Pax5、Bach2、Bcl6等。进一步实验结果表明ADAR1的缺失导致B细胞受体信号通路上游Syk和BLNK等关键信号分子的过度激活,以及下游MEK-ERK通路的过度激活。表明ADAR1在B细胞受体信号通路的激活过程中发挥了重要的负调控作用。

综上所述,本文揭示了RNA编辑酶ADAR1在体液免疫反应中的功能,阐明了ADAR1 p150变体在体液免疫反应中发挥主导作用,揭示了ADAR1在活化B细胞分化命运选择过程中发挥了重要的调控作用,提出了ADAR1通过参与B细胞受体信号通路调控活化B细胞分化途径的分子机制。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2023-06
参考文献列表

[1] BASS B L, WEINTRAUB H. An unwinding activity that covalently modifies its double-stranded RNA substrate[J]. Cell, 1988, 55(6): 1089-1098.
[2] CHUNG H, CALIS J J A, WU X, et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown[J]. Cell, 2018, 172(4): 811-824 e814.
[3] MANNION NIAMH M, GREENWOOD S M, YOUNG R, et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA[J]. Cell Rep, 2014, 9(4): 1482-1494.
[4] LI Y, BANERJEE S, GOLDSTEIN S A, et al. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line[J]. Elife, 2017, 6: e25687
[5] PESTAL K, FUNK C C, SNYDER J M, et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development[J]. Immunity, 2015, 43(5): 933-944.
[6] XU L D, OHMAN M. ADAR1 Editing and its role in cancer[J]. Genes (Basel), 2018, 10(1): 12
[7] SAMUEL C E. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses[J]. J Biol Chem, 2019, 294(5): 1710-1720.
[8] MARCU-MALINA V, GOLDBERG S, VAX E, et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow[J]. Oncotarget, 2016, 7(34): 54370-54379.
[9] NAKAHAMA T, KATO Y, KIM J I, et al. ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity[J]. EMBO Rep, 2018, 19(12): e46303
[10] VONGPIPATANA T, NAKAHAMA T, SHIBUYA T, et al. ADAR1 regulates early T cell development via MDA5-dependent and -independent pathways[J]. J Immunol, 2020, 204(8): 2156-2168.
[11] RICE G I, KASHER P R, FORTE G M, et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature[J]. Nat Genet, 2012, 44(11): 1243-1248.
[12] SONG B, SHIROMOTO Y, MINAKUCHI M, et al. The role of RNA editing enzyme ADAR1 in human disease[J]. Wiley Interdiscip Rev RNA, 2022, 13(1): e1665.
[13] HARDY R R, HAYAKAWA K. B cell development pathways[J]. Annu Rev Immunol, 2001, 19(1): 595-621.
[14] MAEDA T, MERGHOUB T, HOBBS R M, et al. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF[J]. Science, 2007, 316(5826): 860-866.
[15] PIEPER K, GRIMBACHER B, EIBEL H. B-cell biology and development[J]. J Allergy Clin Immunol, 2013, 131(4): 959-971.
[16] KWON K, HUTTER C, SUN Q, et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development[J]. Immunity, 2008, 28(6): 751-762.
[17] ALLENDE M L, TUYMETOVA G, LEE B G, et al. S1P1 receptor directs the release of immature B cells from bone marrow into blood[J]. J Exp Med, 2010, 207(5): 1113-1124.
[18] SMULSKI C R, EIBEL H. BAFF and BAFF-receptor in B cell selection and survival[J]. Front Immunol, 2018, 9: 2285.
[19] TANAKA S, BABA Y. B cell receptor signaling[J]. Adv Exp Med Biol, 2020, 1254: 23-36.
[20] LIU W, WANG H, XU C. Antigen receptor nanoclusters: small units with big functions[J]. Trends Immunol, 2016, 37(10): 680-689.
[21] SAIJO K, SCHMEDT C, SU I H, et al. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development[J]. Nat Immunol, 2003, 4(3): 274-279.
[22] KUROSAKI T, TSUKADA S. BLNK: connecting Syk and Btk to calcium signals[J]. Immunity, 2000, 12(1): 1-5.
[23] HARWOOD N E, BATISTA F D. Early events in B cell activation[J]. Annu Rev Immunol, 2010, 28: 185-210.
[24] HIKIDA M, KUROSAKI T. Regulation of phospholipase C‐γ2 networks in B lymphocytes[J]. Adv Immunol, 2005, 88: 73-96.
[25] FUJIMOTO M, FUJIMOTO Y, POE J C, et al. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification[J]. Immunity, 2000, 13(1): 47-57.
[26] MATTILA P K, FEEST C, DEPOIL D, et al. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling[J]. Immunity, 2013, 38(3): 461-474.
[27] CHERUKURI A, SHOHAM T, SOHN H W, et al. The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts[J]. J Immunol, 2004, 172(1): 370-380.
[28] RICKERT R C. Regulation of B lymphocyte activation by complement C3 and the B cell coreceptor complex[J]. Curr Opin Immunol, 2005, 17(3): 237-243.
[29] LI J, YIN W, JING Y, et al. The coordination between B cell receptor signaling and the actin cytoskeleton during B cell activation[J]. Front Immunol, 2018, 9: 3096.
[30] TOLAR P. Cytoskeletal control of B cell responses to antigens[J]. Nat Rev Immunol, 2017, 17(10): 621-634.
[31] LEE J, SENGUPTA P, BRZOSTOWSKI J, et al. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells[J]. Mol Biol Cell, 2017, 28(4): 511-523.
[32] TOLAR P, HANNA J, KRUEGER P D, et al. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens[J]. Immunity, 2009, 30(1): 44-55.
[33] LIU C, MILLER H, ORLOWSKI G, et al. Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens[J]. J Immunol, 2012, 188(7): 3237-3246.
[34] FLEIRE S J, GOLDMAN J P, CARRASCO Y R, et al. B cell ligand discrimination through a spreading and contraction response[J]. Science, 2006, 312(5774): 738-741.
[35] BHANJA A, REY-SUAREZ I, SONG W, et al. Bidirectional feedback between BCR signaling and actin cytoskeletal dynamics[J]. FEBS J, 2022, 289(15): 4430-4446.
[36] CYSTER J G, ALLEN C D C. B cell responses: cell interaction dynamics and decisions[J]. Cell, 2019, 177(3): 524-540.
[37] KWAK K, AKKAYA M, PIERCE S K. B cell signaling in context[J]. Nat Immunol, 2019, 20(8): 963-969.
[38] ELSNER R A, SHLOMCHIK M J. Germinal center and extrafollicular B Cell responses in vaccination, immunity, and sutoimmunity[J]. Immunity, 2020, 53(6): 1136-1150.
[39] GLAROS V, RAUSCHMEIER R, ARTEMOV A V, et al. Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response[J]. Immunity, 2021, 54(9): 2005-2023 e2010.
[40] TAYLOR J J, PAPE K A, STEACH H R, et al. Humoral immunity. Apoptosis and antigen affinity limit effector cell differentiation of a single naive B cell[J]. Science, 2015, 347(6223): 784-787.
[41] PAUS D, PHAN T G, CHAN T D, et al. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation[J]. J Exp Med, 2006, 203(4): 1081-1091.
[42] O'CONNOR B P, VOGEL L A, ZHANG W, et al. Imprinting the fate of antigen-reactive B cells through the affinity of the B cell receptor[J]. J Immunol, 2006, 177(11): 7723-7732.
[43] FITZGERALD K A, KAGAN J C. Toll-like Receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066.
[44] HUA Z, HOU B. TLR signaling in B-cell development and activation[J]. Cell Mol Immunol, 2013, 10(2): 103-106.
[45] BORTNICK A, ALLMAN D. What is and what should always have been: long-lived plasma cells induced by T cell-independent antigens[J]. J Immunol, 2013, 190(12): 5913-5918.
[46] WEISEL F, SHLOMCHIK M. Memory B cells of mice and humans[J]. Annu Rev Immunol, 2017, 35: 255-284.
[47] VOS Q, LEES A, WU Z Q, et al. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms[J]. Immunol Rev, 2000, 176(1): 154-170.
[48] ELGUETA R, BENSON M J, DE VRIES V C, et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system[J]. Immunol Rev, 2009, 229(1): 152-172.
[49] MESIN L, ERSCHING J, VICTORA G D. Germinal center B cell dynamics[J]. Immunity, 2016, 45(3): 471-482.
[50] ROCO J A, MESIN L, BINDER S C, et al. Class-switch recombination occurs infrequently in germinal centers[J]. Immunity, 2019, 51(2): 337-350 e337.
[51] MAYER C T, GAZUMYAN A, KARA E E, et al. The microanatomic segregation of selection by apoptosis in the germinal center[J]. Science, 2017, 358(6360): eaao2602
[52] MURAMATSU M, KINOSHITA K, FAGARASAN S, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme[J]. Cell, 2000, 102(5): 553-563.
[53] NEUBERGER M S, RADA C. Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase eta for A/T[J]. J Exp Med, 2007, 204(1): 7-10.
[54] STAVNEZER J, SCHRADER C E. IgH chain class switch recombination: mechanism and regulation[J]. J Immunol, 2014, 193(11): 5370-5378.
[55] RODDA L B, BANNARD O, LUDEWIG B, et al. Phenotypic and morphological properties of germinal center dark zone cxcl12-expressing reticular cells[J]. J Immunol, 2015, 195(10): 4781-4791.
[56] ALLEN C D C, ANSEL K M, LOW C, et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5[J]. Nat Immunol, 2004, 5(9): 943-952.
[57] DE SILVA N S, KLEIN U. Dynamics of B cells in germinal centres[J]. Nat Rev Immunol, 2015, 15(3): 137-148.
[58] LUO W, WEISEL F, SHLOMCHIK M J. B cell receptor and CD40 signaling are rewired for synergistic induction of the c-Myc transcription factor in germinal center B cells[J]. Immunity, 2018, 48(2): 313-326 e315.
[59] FINKIN S, HARTWEGER H, OLIVEIRA T Y, et al. Protein amounts of the MYC transcription factor determine germinal center B cell division capacity[J]. Immunity, 2019, 51(2): 324-336 e325.
[60] ERSCHING J, EFEYAN A, MESIN L, et al. Germinal center selection and affinity maturation require dynamic regulation of mTORC1 kinase[J]. Immunity, 2017, 46(6): 1045-1058 e1046.
[61] DOMINGUEZ-SOLA D, VICTORA G D, YING C Y, et al. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry[J]. Nat Immunol, 2012, 13(11): 1083-1091.
[62] PIOLI P D. Plasma cells, the next generation: beyond antibody secretion[J]. Front Immunol, 2019, 10: 2768.
[63] AKKAYA M, KWAK K, PIERCE S K. B cell memory: building two walls of protection against pathogens[J]. Nat Rev Immunol, 2020, 20(4): 229-238.
[64] SHINNAKASU R, KUROSAKI T. Regulation of memory B and plasma cell differentiation[J]. Curr Opin Immunol, 2017, 45: 126-131.
[65] BASSO K, DALLA-FAVERA R. Roles of BCL6 in normal and transformed germinal center B cells[J]. Immunol Rev, 2012, 247(1): 172-183.
[66] VICTORA G D, NUSSENZWEIG M C. Germinal centers[J]. Annu Rev Immunol, 2022, 40: 413-442.
[67] NERA K P, LASSILA O. Pax5 a critical inhibitor of plasma cell fate[J]. Scand J Immunol, 2006, 64(3): 190-199.
[68] SCHEBESTA A, MCMANUS S, SALVAGIOTTO G, et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function[J]. Immunity, 2007, 27(1): 49-63.
[69] NERA K P, KYLANIEMI M K, LASSILA O. Regulation of B Cell to plasma cell transition within the follicular B cell response[J]. Scand J Immunol, 2015, 82(3): 225-234.
[70] TELLIER J, SHI W, MINNICH M, et al. Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response[J]. Nat Immunol, 2016, 17(3): 323-330.
[71] SUAN D, SUNDLING C, BRINK R. Plasma cell and memory B cell differentiation from the germinal center[J]. Curr Opin Immunol, 2017, 45: 97-102.
[72] TAUBENHEIM N, TARLINTON D M, CRAWFORD S, et al. High rate of antibody secretion is not integral to plasma cell differentiation as revealed by XBP-1 deficiency[J]. J Immunol, 2012, 189(7): 3328-3338.
[73] DAVIS M E, CAI H, DRUMMOND G R, et al. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways[J]. Circ Res, 2001, 89(11): 1073-1080.
[74] VIHINEN M, MATTSSON P T, SMITH C I. Bruton tyrosine kinase (BTK) in X-linked agammaglobulinemia (XLA)[J]. Front Biosci, 2000, 5: D917-928.
[75] YAZDANI R, FEKRVAND S, SHAHKARAMI S, et al. The hyper IgM syndromes: epidemiology, pathogenesis, clinical manifestations, diagnosis and management[J]. Clin Immunol, 2019, 198: 19-30.
[76] MACGLASHAN D W, JR. IgE-dependent signaling as a therapeutic target for allergies[J]. Trends Pharmacol Sci, 2012, 33(9): 502-509.
[77] BRODIE E J, INFANTINO S, LOW M S Y, et al. Lyn, lupus, and (B) lymphocytes, a lesson on the critical balance of kinase signaling in immunity[J]. Front Immunol, 2018, 9: 401.
[78] KOZYREV S V, ABELSON A K, WOJCIK J, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus[J]. Nat Genet, 2008, 40(2): 211-216.
[79] MANJARREZ-ORDUNO N, MARASCO E, CHUNG S A, et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation[J]. Nat Genet, 2012, 44(11): 1227-1230.
[80] WULLENKORD R, FRIEDRICHS B, ERDMANN T, et al. Therapeutic potential of PI3K signaling in distinct entities of B-cell lymphoma[J]. Expert Rev Hematol, 2019, 12(12): 1053-1062.
[81] BOCCALETTO P, MACHNICKA M A, PURTA E, et al. MODOMICS: a database of RNA modification pathways. 2017 update[J]. Nucleic Acids Res, 2018, 46(D1): D303-D307.
[82] SINIGAGLIA K, WIATREK D, KHAN A, et al. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(3): 356-369.
[83] PATTERSON J B, SAMUEL C E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase[J]. Mol Cell Bio, 1995, 15(10): 5376-5388.
[84] KIM J I, NAKAHAMA T, YAMASAKI R, et al. RNA editing at a limited number of sites is sufficient to prevent MDA5 activation in the mouse brain[J]. PLoS Genet, 2021, 17(5): e1009516.
[85] STREHBLOW A, HALLEGGER M, JANTSCH M F. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain[J]. Mol Biol Cell, 2002, 13(11): 3822-3835.
[86] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
[87] TUNYASUVUNAKOOL K, ADLER J, WU Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596.
[88] JAIN M, JANTSCH M F, LICHT K. The editor's I on disease development[J]. Trends Genet, 2019, 35(12): 903-913.
[89] KAPOOR U, LICHT K, AMMAN F, et al. ADAR-deficiency perturbs the global splicing landscape in mouse tissues[J]. Genome Res, 2020, 30(8): 1107-1118.
[90] CHEN L, LI Y, LIN C H, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma[J]. Nat Med, 2013, 19(2): 209-216.
[91] TANG S J, SHEN H, AN O, et al. Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development[J]. Nat Commun, 2020, 11(1): 799.
[92] LIDDICOAT B J, CHALK A M, WALKLEY C R. ADAR1, inosine and the immune sensing system: distinguishing self from non-self[J]. Wiley Interdiscip Rev RNA, 2016, 7(2): 157-172.
[93] LIU J, WANG F, ZHANG Y, et al. ADAR1-mediated RNA editing and its role in cancer[J]. Front Cell Dev Biol, 2022, 10: 956649.
[94] NISHIKURA K. A-to-I editing of coding and non-coding RNAs by ADARs[J]. Nat Rev Mol Cell Biol, 2016, 17(2): 83-96.
[95] GOUBAU D, DEDDOUCHE S, REIS E SOUSA C. Cytosolic sensing of viruses[J]. Immunity, 2013, 38(5): 855-869.
[96] LEE A J, ASHKAR A A. The dual nature of type I and type II interferons[J]. Front Immunol, 2018, 9: 2061.
[97] WU J, CHEN Z J. Innate immune sensing and signaling of cytosolic nucleic acids[J]. Annu Rev Immunol, 2014, 32: 461-488.
[98] LIVINGSTON J H, LIN J P, DALE R C, et al. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1[J]. J Med Genet, 2014, 51(2): 76-82.
[99] WANG Q, KHILLAN J, GADUE P, et al. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis[J]. Science, 2000, 290(5497): 1765-1768.
[100] HARTNER J C, WALKLEY C R, LU J, et al. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling[J]. Nat Immunol, 2009, 10(1): 109-115.
[101] BAJAD P, EBNER F, AMMAN F, et al. An internal deletion of ADAR rescued by MAVS deficiency leads to a minute phenotype[J]. Nucleic Acids Res, 2020, 48(6): 3286-3303.
[102] LIDDICOAT B J, PISKOL R, CHALK A M, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself[J]. Science, 2015, 349(6252): 1115-1120.
[103] GUALLAR D, FUENTES-IGLESIAS A, SOUTO Y, et al. ADAR1-dependent RNA editing promotes MET and iPSC reprogramming by alleviating ER stress[J]. Cell Stem Cell, 2020, 27(2): 300-314 e311.
[104] MAURANO M, SNYDER J M, CONNELLY C, et al. Protein kinase R and the integrated stress response drive immunopathology caused by mutations in the RNA deaminase ADAR1[J]. Immunity, 2021, 54(9): 1948-1960 e1945.
[105] WANG Q, MIYAKODA M, YANG W, et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene[J]. J Biol Chem, 2004, 279(6): 4952-4961.
[106] PUJANTELL M, FRANCO S, GALVAN-FEMENIA I, et al. ADAR1 affects HCV infection by modulating innate immune response[J]. Antiviral Res, 2018, 156: 116-127.
[107] ZHOU S, YANG C, ZHAO F, et al. Double-stranded RNA deaminase ADAR1 promotes the Zika virus replication by inhibiting the activation of protein kinase PKR[J]. J Biol Chem, 2019, 294(48): 18168-18180.
[108] RADETSKYY R, DAHER A, GATIGNOL A. ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication[J]. Cytokine Growth Factor Rev, 2018, 40: 48-58.
[109] SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5): 5451-5465.
[110] CHEN T, XIANG J F, ZHU S, et al. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner[J]. Cell Res, 2015, 25(4): 459-476.
[111] OTA H, SAKURAI M, GUPTA R, et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing[J]. Cell, 2013, 153(3): 575-589.
[112] YANG W, CHENDRIMADA T P, WANG Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases[J]. Nat Struct Mol Biol, 2006, 13(1): 13-21.
[113] KAWAHARA Y, MEGRAW M, KREIDER E, et al. Frequency and fate of microRNA editing in human brain[J]. Nucleic Acids Res, 2008, 36(16): 5270-5280.
[114] ZIPETO M A, COURT A C, SADARANGANI A, et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis[J]. Cell Stem Cell, 2016, 19(2): 177-191.
[115] CROW Y J, CHASE D S, LOWENSTEIN SCHMIDT J, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1[J]. Am J Med Genet A, 2015, 167A(2): 296-312.
[116] NAKAHAMA T, KATO Y, SHIBUYA T, et al. Mutations in the adenosine deaminase ADAR1 that prevent endogenous Z-RNA binding induce Aicardi-Goutieres-syndrome-like encephalopathy[J]. Immunity, 2021, 54(9): 1976-1988 e1977.
[117] TANG Q, RIGBY R E, YOUNG G R, et al. Adenosine-to-inosine editing of endogenous Z-form RNA by the deaminase ADAR1 prevents spontaneous MAVS-dependent type I interferon responses[J]. Immunity, 2021, 54(9): 1961-1975 e1965.
[118] KARKI R, SUNDARAM B, SHARMA B R, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis[J]. Cell Rep, 2021, 37(3): 109858.
[119] HUBBARD N W, AMES J M, MAURANO M, et al. ADAR1 mutation causes ZBP1-dependent immunopathology[J]. Nature, 2022, 607(7920): 769-775.
[120] JIAO H, WACHSMUTH L, WOLF S, et al. ADAR1 averts fatal type I interferon induction by ZBP1[J]. Nature, 2022, 607(7920): 776-783.
[121] MARSHALL P R, ZHAO Q, LI X, et al. Dynamic regulation of Z-DNA in the mouse prefrontal cortex by the RNA-editing enzyme Adar1 is required for fear extinction[J]. Nat Neurosci, 2020, 23(6): 718-729.
[122] BAAL N, CUNNINGHAM S, OBERMANN H L, et al. ADAR1 is required for dendritic cell subset homeostasis and alveolar macrophage function[J]. J Immunol, 2019, 202(4): 1099-1111.
[123] KAYA-OKUR H S, WU S J, CODOMO C A, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1): 1930.
[124] TERAJIMA H, LU M, ZHANG L, et al. N6-methyladenosine promotes induction of ADAR1-mediated A-to-I RNA editing to suppress aberrant antiviral innate immune responses[J]. PLoS Biol, 2021, 19(7): e3001292.
[125] LI L, QIAN G, ZUO Y, et al. Ubiquitin-dependent turnover of adenosine deaminase acting on RNA 1 (ADAR1) is required for efficient antiviral activity of type I interferon[J]. J Biol Chem, 2016, 291(48): 24974-24985.
[126] YOSHIDA H, LAREAU C A, RAMIREZ R N, et al. The cis-regulatory atlas of the mouse immune system[J]. Cell, 2019, 176(4): 897-912 e820.
[127] XU S, GUO K, ZENG Q, et al. The RNase III enzyme Dicer is essential for germinal center B-cell formation[J]. Blood, 2012, 119(3): 767-776.
[128] HARDY R R, KINCADE P W, DORSHKIND K. The protean nature of cells in the B lymphocyte lineage[J]. Immunity, 2007, 26(6): 703-714.
[129] PONE E J, ZHANG J, MAI T, et al. BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-kappaB pathway[J]. Nat Commun, 2012, 3: 767.
[130] LIU X, ZHAO Y, QI H. T-independent antigen induces humoral memory through germinal centers[J]. J Exp Med, 2022, 219(3): e20210527.
[131] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523.
[132] WANG Q, LI X, QI R, et al. RNA Editing, ADAR1, and the innate immune response[J]. Genes (Basel), 2017, 8(1): 41.
[133] DAOU S, TALUKDAR M, TANG J, et al. A phenolic small molecule inhibitor of RNase L prevents cell death from ADAR1 deficiency[J]. Proc Natl Acad Sci U S A, 2020, 117(40): 24802-24812.
[134] CASTELLI J C, HASSEL B A, WOOD K A, et al. A study of the interferon antiviral mechanism: apoptosis activation by the 2-5A system[J]. J Exp Med, 1997, 186(6): 967-972.
[135] SYEDBASHA M, BONFIGLIO F, LINNIK J, et al. Interferon-lambda enhances the differentiation of naive B cells into plasmablasts via the mTORC1 pathway[J]. Cell Rep, 2020, 33(1): 108211.
[136] STELLOS K, GATSIOU A, STAMATELOPOULOS K, et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation[J]. Nat Med, 2016, 22(10): 1140-1150.
[137] HAO X, SHIROMOTO Y, SAKURAI M, et al. ADAR1 downregulation by autophagy drives senescence independently of RNA editing by enhancing p16(INK4a) levels[J]. Nat Cell Biol, 2022, 24(8): 1202-1210.
[138] LEE Y M, KIM H E, LEE E H, et al. NMR investigation on the DNA binding and B-Z transition pathway of the Zalpha domain of human ADAR1[J]. Biophys Chem, 2013, 172: 18-25.
[139] HIPP N, SYMINGTON H, PASTORET C, et al. IL-2 imprints human naive B cell fate towards plasma cell through ERK/ELK1-mediated BACH2 repression[J]. Nat Commun, 2017, 8(1): 1443.
[140] YASUDA T, KOMETANI K, TAKAHASHI N, et al. ERKs induce expression of the transcriptional repressor Blimp-1 and subsequent plasma cell differentiation[J]. Sci Signal, 2011, 4(169): ra25.
[141] NIE Y, DING L, KAO P N, et al. ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing[J]. Mol Cell Biol, 2005, 25(16): 6956-6963.
[142] JING Y, DAI X, YANG L, et al. STING couples with PI3K to regulate actin reorganization during BCR activation[J]. Sci Adv, 2020, 6(17): eaax9455.
[143] SCHMIDT C, CHRISTIAN L, SMITH T A, et al. Lipid rafts interaction of the ARID3A transcription factor with EZRIN and G-actin regulates B-cell receptor signaling[J]. Diseases, 2021, 9(1): 22.
[144] BOLGER-MUNRO M, CHOI K, CHEUNG F, et al. The Wdr1-LIMK-Cofilin axis controls B cell antigen receptor-induced actin remodeling and signaling at the immune synapse[J]. Front Cell Dev Biol, 2021, 9: 649433.
[145] REY-SUAREZ I, WHEATLEY B A, KOO P, et al. WASP family proteins regulate the mobility of the B cell receptor during signaling activation[J]. Nat Commun, 2020, 11(1): 439.

所在学位评定分委会
生物学
国内图书分类号
Q352
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549449
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
李宇兴. RNA编辑酶ADAR1在体液免疫反应中的作用及机制研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849500-李宇兴-生物系.pdf(18357KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李宇兴]的文章
百度学术
百度学术中相似的文章
[李宇兴]的文章
必应学术
必应学术中相似的文章
[李宇兴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。