中文版 | English
题名

基于分布式光纤传感技术的 CFRP-钢接头界面行为研究

其他题名
STUDY OF CFRP-STEEL BONDED JOINTS INTERFACE BEHAVIOUR USING DISTRIBUTED OPTICAL FIBRE SENSING
姓名
姓名拼音
WANG Haoran
学号
12032914
学位类型
硕士
学位专业
0801 力学
学科门类/专业学位类别
08 工学
导师
陈建飞
导师单位
海洋科学与工程系
论文答辩日期
2023-05-23
论文提交日期
2023-08-09
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

碳纤维增强复合材料 (Carbon Fibre Reinforced Polymer, CFRP) 被广泛
应用于加固钢结构,CFRP-钢粘接界面性能是影响 CFRP 加固钢结构承载能
力的主要因素。单搭接接头拉伸-剪切试验通常被用于研究 CFRP-钢粘接界
面的抗剪强度。单点测量的应变片在连续且密集测量方面存在一定的局限
性,而分布式光纤传感器具有测点密度高、间距小、精度高等优点,因此,
本研究使用分布式光纤传感器测量 CFRP-钢单搭接接头的应变来研究
CFRP-钢接头界面行为。首先,本研究测定了 CFRP-钢单搭接接头中 CFRP
板、钢板和胶粘剂的力学性能。其次,本文对比研究了不同光纤涂层(聚
酰亚胺、丙烯酸酯)和不同胶粘剂(环氧树脂、氰基丙烯酸酯)对测量精
度的影响,试验研究发现:使用环氧树脂粘贴聚酰亚胺涂层的光纤用于测
量 CFRP 板和钢板的应变,能较好地解决光纤与 CFRP 板及钢板间的协同变
形问题;此外,在已安装完成的光纤表面制作薄弱层可有效解决光纤从被
测结构剥离的问题。提出了利用应变数据计算界面张开位移和界面剪应力
的计算理论,通过光纤传感器测得的应变数据,可计算得到 CFRP-钢单搭
接接头之间的界面张开位移与界面剪应力分布,结果表明拉伸-剪切试验中
的 CFRP-钢单搭接接头存在明显的弯曲变形,局部剪应力强度远高于平均
剪应力强度。最后,建立了 CFRP-钢单搭接接头拉伸-剪切试验的有限元模
型,试验测得的应变与有限元结果吻合良好。本文的研究为使用分布式光
纤传感器监测搭接接头界面断裂过程提供重要的技术指导。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表
[1] 许鑫, 罗国伟, 杨其全, 等. 我国铁路钢轨焊接接头折断案例的分析与讨论[J]. 高速铁路新材料, 2022, 1(6): 77-84.

[2] 范俊涛. 复合材料多螺栓连接接头载荷分配及损伤失效研究[D]. 湖南大学, 2020

[2023-03-27].

[3] Deng J, Lee M M K. Behaviour under static loading of metallic beams reinforced with a bonded CFRP plate[J]. Composite Structures, 2007, 78(2): 232-242.

[4] Teng J G, Yu T, Fernando D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research, 2012, 78: 131-143.

[5] Zhao X L, Zhang L. State-of-the-art review on FRP strengthened steel structures[J]. Engineering Structures, 2007, 29(8): 1808-1823.

[6] Kersey A D. A Review of Recent Developments in Fiber Optic Sensor Technology[J]. Optical Fiber Technology, 1996, 2(3): 291-317.

[7] Du C, Dutta S, Kurup P, et al. A review of railway infrastructure monitoring using fiber optic sensors[J]. Sensors and Actuators A: Physical, 2020, 303: 111728.

[8] Li H N, Li D S, Song G B. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures, 2004, 26(11): 1647-1657.

[9] Kenel A, Nellen P, Frank A, 等. Reinforcing Steel Strains Measured by Bragg Grating Sensors[J]. Journal of Materials in Civil Engineering, 2005, 17(4): 423-431.

[10] Murayama H, Kageyama K, Uzawa K, et al. Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors[J]. Structural Health Monitoring, 2012, 11(3): 325-344.

[11] Lemcherreq Y, Galkovski T, Mata-Falcón J, et al. Application of Distributed Fibre Optical Sensing in Reinforced Concrete Elements Subjected to Monotonic and Cyclic Loading[J]. Sensors, 2022, 22(5): 2023.

[12] Barrias A, Casas J R, Villalba S. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications[J]. Sensors, 2016, 16(5): 748.

[13] 尚盈, 王晨, 倪家升. 分布式光纤传感技术与应用[M]. 北京:电子工业出版社, 2021.

[14] 阳光耀. 基于光纤背向散射的分布式光纤动态应变传感技术研究[D]. 上海交通大学, 2020.

[15] Bado M F, Casas J R. A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring[J]. Sensors, 2021, 21(5): 1818.

[16] Barrias A, Casas J R, Villalba S. Distributed optical fibre sensors in concrete structures: Performance of bonding adhesives and influence of spatial resolution[J]. Structural Control and Health Monitoring, 2019, 26(3): e2310.

[17] Fernando N D. Bond behaviour and debonding failures in CFRP-strengthened steel members[D]. Hong Kong Polytechnic University, 2010

[2021-07-01].

[18] 李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12): 4090-4105.

[19] Al-Emrani M, Linghoff D, Kliger R. Bonding strength and fracture mechanisms in composite steel-CFRP elements[C]//International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), International Institute for FRP in Construction. 2005.

[20] Zhang L, Teng J G. Finite element prediction of interfacial stresses in structural members bonded with a thin plate[J]. Engineering Structures, 2010, 32(2): 459-471.

[21] Yuan H, Teng J G, Seracino R, et al. Full-range behavior of FRP-to-concrete bonded joints[J]. Engineering Structures, 2004, 26(5): 553-565.

[22] Zeng J J, Gao W Y, Liu F. Interfacial behavior and debonding failures of full-scale CFRP-strengthened H-section steel beams[J]. Composite Structures, 2018, 201: 540-552.

[23] Yu T, Fernando D, Teng J G, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering, 2012, 43(5): 2279-2289.

[24] Colombi P, Poggi C. An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips[J]. Composites Part B: Engineering, 2006, 37(1): 64-73.

[25] Wu Z, Yuan H, Niu H. Stress Transfer and Fracture Propagation in Different Kinds of Adhesive Joints[J]. Journal of Engineering Mechanics, 2002, 128(5): 562-573.

[26] Fernando D, Teng J G, Yu T, et al. Preparation and Characterization of Steel Surfaces for Adhesive Bonding[J]. Journal of Composites for Construction, 2013, 17(6): 04013012.

[27] 慕文龙. 湿热-力耦合作用对CFRP/铝合金粘接接头力学性能的影响[D]. 吉林大学, 2020.

[28] Zhou H, Fernando D, Torero J L, et al. Bond Behavior of CFRP-to-Steel Bonded Joints at Mild Temperatures: Experimental Study[J]. Journal of Composites for Construction, 2020, 24(6): 04020070.

[29] 秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D]. 吉林大学, 2018.

[30] 邵新愿. CFRP-Al胶接接头湿热老化力学性能研究[D]. 大连理工大学, 2020.

[31] 金勇. 结构胶粘剂Ⅰ型断裂性能湿热老化行为研究[D]. 大连理工大学, 2018

[2021-07-01].

[32] Hou Y, Wang W, Meng L, et al. An insight into the mechanical behavior of adhesively bonded plain-woven-composite joints using multiscale modeling[J]. International Journal of Mechanical Sciences, 2022, 219: 107063.

[33] Peng Z, Wang C, Chen L, et al. Peeling behavior of a viscoelastic thin-film on a rigid substrate[J]. International Journal of Solids and Structures, 2014, 51(25-26): 4596-4603.

[34] Wu Y F, Liu K. Characterization of Mechanically Enhanced FRP Bonding System[J]. Journal of Composites for Construction, 2013, 17(1): 34-49.

[35] Yao J, Teng J G, Chen J F. Experimental study on FRP-to-concrete bonded joints[J]. Composites Part B: Engineering, 2005, 36(2): 99-113.

[36] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12): 3534-3546.

[37] 李洁. 基于分布式光纤的应变传递理论及实验研究[D]. 大连理工大学, 2018.

[38] Monsberger C M, Lienhart W. Distributed Fiber Optic Shape Sensing of Concrete Structures[J]. Sensors, 2021, 21(18): 6098.

[39] 单一男, 马智锦, 曾旭, 等. 基于分布式光纤传感技术的结构变形估计方法研究[J]. 仪器仪表学报, 2021, 42(04): 1-9.

[40] Mata-Falcón J, Haefliger S, Lee M, et al. Combined application of distributed fibre optical and digital image correlation measurements to structural concrete experiments[J]. Engineering Structures, 2020, 225: 111309.

[41] Fernandez I, Berrocal C G, Rempling R. Long-Term Performance of Distributed Optical Fiber Sensors Embedded in Reinforced Concrete Beams under Sustained Deflection and Cyclic Loading[J]. Sensors, 2021, 21(19): 6338.

[42] Ning X, Murayama H, Kageyama K, et al. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG[J]. Smart Materials and Structures, 2014, 23(10): 105011.

[43] Yashiro S, Wada J, Sakaida Y. A monitoring technique for disbond area in carbon fiber–reinforced polymer bonded joints using embedded fiber Bragg grating sensors: Development and experimental validation[J]. Structural Health Monitoring, 2017, 16(2): 185-201.

[44] Wada D, Igawa H, Tamayama M, et al. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system[J]. Smart Materials and Structures, 2018, 27(2): 025014.

[45] Mustafa S, Sekiya H, Maeda I, et al. Identification of external load information using distributed optical fiber sensors embedded in an existing road pavement[J]. Optical Fiber Technology, 2021, 67: 102705.

[46] Yu Y, Vergori E, Worwood D, et al. Distributed thermal monitoring of lithium ion batteries with optical fibre sensors[J]. Journal of Energy Storage, 2021, 39: 102560.

[47] Shamsuddoha Md, David M, Oromiehie E, et al. Distributed optical fibre sensor based monitoring of thermoplastic carbon composite cylinders under biaxial loading: Experimental and numerical investigations[J]. Composite Structures, 2021, 261: 113277.

[48] Sánchez D M, Gresil M, Soutis C. Distributed internal strain measurement during composite manufacturing using optical fibre sensors[D]. 2015

[2022-06-12].

[49] Li W, Guo S, Liu Y, et al. Structure health monitoring of composites joint reinforced by Acoustic Emission based Smart Composite Fasteners[J]. Composites Communications, 2022, 33: 101213.

[50] Bernasconi A, Martulli L M, Carboni M. Fatigue crack growth analysis in composite bonded joints by back face distributed strain sensing and comparison with X-ray microtomography[J]. International Journal of Fatigue, 2022, 154: 106526.

[51] Galkovski T, Lemcherreq Y, Mata-Falcón J, et al. Fundamental Studies on the Use of Distributed Fibre Optical Sensing on Concrete and Reinforcing Bars[J]. Sensors, 2021, 21(22): 7643.

[52] Xu C, Sharif Khodaei Z. Shape Sensing with Rayleigh Backscattering Fibre Optic Sensor[J]. Sensors, 2020, 20(14): 4040.

[53] 吴智深, 唐永圣, 黄璜. 利用自传感FRP筋实现结构性能全面监测和自诊断研究[J]. 建筑结构, 2013, 43(19): 5-9+4.

[54] Zhu P, Xie X, Sun X, et al. Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites[J]. Composites Part B: Engineering, 2019, 168: 267-273.

[55] Ge J, James A E, Xu L, et al. Bidirectional Soft Silicone Curvature Sensor Based on Off-Centered Embedded Fiber Bragg Grating[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2237-2240.

[56] Xu L, Ge J, Patel J H, 等. Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing[J]. Optics Express, 2017, 25(20): 24727-24734.

[57] He Y, Zhang X, Zhu L, et al. Optical Fiber Sensor Performance Evaluation in Soft Polyimide Film with Different Thickness Ratios[J]. Sensors, 2019, 19(4): 790.

[58] Zhao Z, Soto M A, Tang M, 等. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 2016, 24(22): 25211-25223.

[59] 曾鹏, 王源, 陈飞琼, 等. 胶粘剂对表贴式聚酰亚胺光纤布拉格光栅应变传递的影响分析[J]. 传感技术学报, 2019, 32(01): 43-49.

[60] Her S C, Huang C Y. Effect of Coating on the Strain Transfer of Optical Fiber Sensors[J]. Sensors, 2011, 11(7): 6926-6941.

[61] Falcetelli F, Rossi L, Di Sante R, et al. Strain Transfer in Surface-Bonded Optical Fiber Sensors[J]. Sensors, 2020, 20(11): 3100.

[62] Zhao L, Tang F, Li H N, et al. Characterization of OFDR distributed optical fiber for crack monitoring considering fiber-coating interfacial slip[J]. Structural Health Monitoring, 2022: 147592172210851.

[63] Lau K tak, Yuan L, Zhou L min, et al. Strain monitoring in FRP laminates and concrete beams using FBG sensors[J]. Composite Structures, 2001, 51(1): 9-20.

[64] Zhang S, Liu H, Coulibaly A A S, et al. Fiber optic sensing of concrete cracking and rebar deformation using several types of cable[J]. Structural Control and Health Monitoring, 2021, 28(2): e2664.

[65] Barrias A, Casas J R, Villalba S. Fatigue performance of distributed optical fiber sensors in reinforced concrete elements[J]. Construction and Building Materials, 2019, 218: 214-223.

[66] Quiertant M, Baby F, Khadour A, et al. Deformation Monitoring of Reinforcement Bars with a Distributed Fiber Optic Sensor for the SHM of Reinforced Concrete Structures[C]//NDE. 2012: 10p

[2023-05-08].

[67] Barbosa N G C, Campilho R D S G, Silva F J G, 等. Comparison of different adhesively-bonded joint types for mechanical structures[J]. Applied Adhesion Science, 2018, 6(1): 15.

[68] Yuan H, Chen J F, Teng J G, et al. Interfacial stress analysis of a thin plate bonded to a rigid substrate and subjected to inclined loading[J]. International Journal of Solids and Structures, 2007, 44(16): 5247-5271.

[69] Teng J G, Fernando D, Yu T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates[J]. Engineering Structures, 2015, 86: 213-224.

[70] Camanho P P, Davila C G, de Moura M F. Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438.

[71] De Lorenzis L, Fernando D, Teng J G. Coupled mixed-mode cohesive zone modeling of interfacial debonding in simply supported plated beams[J]. International Journal of Solids and Structures, 2013, 50(14): 2477-2494.

所在学位评定分委会
力学
国内图书分类号
TU391
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/549552
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
王浩然. 基于分布式光纤传感技术的 CFRP-钢接头界面行为研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032914-王浩然-海洋科学与工程(5356KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王浩然]的文章
百度学术
百度学术中相似的文章
[王浩然]的文章
必应学术
必应学术中相似的文章
[王浩然]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。