题名 | Light-Controlled Performance of Aggregate-Based Fluorescent Materials: from Aggregate Science Study to Exploration of Their Biological Applications |
姓名 | |
姓名拼音 | ZHANG Chen
|
学号 | 11951001
|
学位类型 | 博士
|
学位专业 | 化学
|
导师 | |
导师单位 | 生物医学工程系
|
论文答辩日期 | 2023-05-31
|
论文提交日期 | 2023-08-10
|
学位授予单位 | 香港科技大学
|
学位授予地点 | 香港
|
摘要 | Fluorescent materials in aggregate have attracted much attention, especially since the
discovery and definition of aggregation-induced emission (AIE) phenomenon during the past 20 years. On the one hand, the characteristics of stable brightness and biocompatibility of organic fluorescent aggregates can make them qualified probe for long-term cell tracking, in vivo imaging, and other biological applications. On the other hand, various requirements of developing functional biomaterials can prompt researchers to rethink the relationship between material properties and their aggregate state. Unlike traditional point of view from reductionism, aggregate science is still unexplored, and should be considered more in the design of ideal fluorescent biomaterials.
Towards the biological applications, non-invasiveness and efficiency are two main
problems in practice. Aggregate-based fluorescent materials in the near-infrared emission (NIR) region can relieve the damage from laser energy, reduce tissue scattering and autofluorescence in comparison with the visible light. Moreover, such materials, including polymers and highly conjugated organic small molecules, possess the potential for multifunctionality modification no matter in the form of homo- or hetero-aggregates. Their fast delivery in vivo can be achieved by modulating photoinduced thermoacoustic (PTA) processes, which has just been identified and utilized in these two years by our group.
This thesis mainly studied the light-controlled performance of fluorescent aggregates
and their multifarious biological applications. Firstly, hetero-aggregates of AIEgens and polymers were constructed for multifunctional and stable imaging of blood vessels in phototheranostics. Then, by adjusting NIR pulse laser, photoacoustic radiation force was firstly utilized for drug delivery with high efficiency, taking fluorescent polymers as a demonstration. Furthermore, this proof-of-concept were extended to a newly synthesized multifunctional AIEgen, and the term and mechanism of PTA processes were first proposed and discussed. Finally, the molecular homo-aggregates of an iridium-based complex, without any other encapsulation, were designed for optogenetics modulation under two-photon excitation. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2019
|
学位授予年份 | 2023-08
|
参考文献列表 | [1. Clauser, J. F., Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Physical Review D 1974, 9 (4), 853. 2. Pais, A., Einstein and the quantum theory. Reviews of Modern Physics 1979, 51 (4), 863. 3. Selleri, F., Wave-particle duality. Springer Science & Business Media: 2012. \4. Peruzzo, A.; Shadbolt, P.; Brunner, N.; Popescu, S.; O’Brien, J. L., A quantum delayed-choice experiment. Science 2012, 338 (6107), 634-637. 5. Walls, D., Evidence for the quantum nature of light. Nature 1979, 280 (5722), 451-454. 6. Köhler, A.; Wilson, J. S.; Friend, R. H., Fluorescence and phosphorescence in organic materials. Advanced Materials 2002, 14 (10), 701-707. 7. Roda, A.; Pasini, P.; Mirasoli, M.; Michelini, E.; Guardigli, M., Biotechnological applications of bioluminescence and chemiluminescence. TRENDS in Biotechnology 2004, 22 (6), 295-303. 8. Furetta, C., Handbook of thermoluminescence. World Scientific: 2010. 9. Walton, A. J., Triboluminescence. Advances in Physics 1977, 26 (6), 887-948.10. Crosby, G. A.; Demas, J. N., Measurement of photoluminescence quantum yields. Review. The Journal of Physical Chemistry 1971, 75 (8), 991-1024. 11. Itoh, T., Fluorescence and phosphorescence from higher excited states of organic molecules. Chemical Reviews 2012, 112 (8), 4541-4568. 12. Ceredig, R., George Gabriel Stokes as a biologist. Philosophical Transactions of the Royal Society A 2020, 378 (2179), 20200105. 13. VanEngelenburg, S. B.; Palmer, A. E., Fluorescent biosensors of protein function. Current Opinion in Chemical Biology 2008, 12 (1), 60-65. 14. Jokerst, J. V.; Gambhir, S. S., Molecular imaging with theranostic nanoparticles. Accounts of Chemical Research 2011, 44 (10), 1050-1060. 15. Hong, G.; Antaris, A. L.; Dai, H., Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering 2017, 1 (1), 0010. 16. Wolfbeis, O. S., An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews 2015, 44 (14), 4743-4768. 17. Kircher, M. F.; Gambhir, S. S.; Grimm, J., Noninvasive cell-tracking methods. Nature Reviews Clinical Oncology 2011, 8 (11), 677-688. 18. Wysocki, L. M.; Lavis, L. D., Advances in the chemistry of small molecule fluorescent probes. Current Opinion in Chemical Biology 2011, 15 (6), 752-759. 19. Yang, J.; Fang, M.; Li, Z., Organic luminescent materials: the concentration on aggregates from aggregation‐induced emission. Aggregate 2020, 1 (1), 6-18. 20. Cai, X.; Liu, B., Aggregation‐induced emission: recent advances in materials and biomedical applications. Angewandte Chemie International Edition 2020, 59 (25), 9868-9886. 21. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission: together we shine, united we soar! Chemical Reviews 2015, 115 (21), 11718-11940. 22. Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z., AIE luminogens: emission brightened by aggregation. Materials Today 2015, 18 (7), 365-377. 23. Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D., Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5- pentaphenylsilole. Chemical Communications 2001, (18), 1740-1741. 24. Zhao, Z.; Tang, B. Z., AIE study: a stepping stone to aggregate science. National Science Review 2021, 8 (6), nwab079. 25. Zhao, Z.; Zhang, H.; Lam, J. W.; Tang, B. Z., Aggregation‐induced emission: new vistas at the aggregate level. Angewandte Chemie International Edition 2020, 59 (25), 9888-9907. 26. Zhao, Z.; He, W.; Tang, B. Z., Aggregate Materials beyond AIEgens. Accounts of Materials Research 2021, 2 (12), 1251-1260. 27. Zhang, H.; Zhao, Z.; Turley, A. T.; Wang, L.; McGonigal, P. R.; Tu, Y.; Li, Y.; Wang, Z.; Kwok, R. T.; Lam, J. W., Aggregate science: from structures to properties. Advanced Materials 2020, 32 (36), 2001457. 28. Shaya, J.; Corridon, P. R.; Al-Omari, B.; Aoudi, A.; Shunnar, A.; Mohideen, M. I. H.; Qurashi, A.; Michel, B. Y.; Burger, A., Design, photophysical properties, and applications of fluorene-based fluorophores in two-photon fluorescence bioimaging: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2022, 100529. 29. Chen, Y., Recent advances in AIEgens for three-photon fluorescence bioimaging. Materials Today Chemistry 2022, 25, 100975. 30. Tao, Y.; Chan, H. F.; Shi, B.; Li, M.; Leong, K. W., Light: a magical tool for controlled drug delivery. Advanced Functional Materials 2020, 30 (49), 2005029. 31. Tang, B. Z., Aggregology: Exploration and innovation at aggregate level. Wiley Online Library: 2020; Vol. 1, pp 4-5. 32. Sousa, M. M.; Melo, M. J.; Parola, A. J.; Morris, P. J.; Rzepa, H. S.; De Melo, J. S. S., A study in mauve: unveiling Perkin's dye in historic samples. Chemistry–A European Journal 2008, 14 (28), 8507-8513. 33. Bafana, A.; Devi, S. S.; Chakrabarti, T., Azo dyes: past, present and the future. Environmental Reviews 2011, 19 (NA), 350-371. 34. Wainwright, M., Dyes, trypanosomiasis and DNA: a historical and critical review. Biotechnic & Histochemistry 2010, 85 (6), 341-354. 35. Byvaltsev, V. A.; Bardonova, L. A.; Onaka, N. R.; Polkin, R. A.; Ochkal, S. V.; Shepelev, V. V.; Aliyev, M. A.; Potapov, A. A., Acridine orange: a review of novel applications for surgical cancer imaging and therapy. Frontiers in Oncology 2019, 9, 925. 36. KASTEN, F. H., The origins of modern fluorescence microscopy and fluorescent probes. In Cell structure and function by microspectrofluorometry, Elsevier: 1989; pp 3-50. 37. KASTEN, F. H., Probes: Properties, History and Applications. Fluorescent and luminescent probes for biological activity: a practical guide to technology for quantitative real-time analysis 1999, 17. 38. Linnér, E.; Friedenwald, J. S., The appearance time of fluorescein as an index of aqueous flow. American Journal of Ophthalmology 1957, 44 (2), 225-229. 39. Sabolova, D.; Kristian, P.; Kozurkova, M., Proflavine/acriflavine derivatives with versatile biological activities. Journal of Applied Toxicology 2020, 40 (1), 64-71. 40. Browning, C.; Gulbransen, R.; Thornton, L., The antiseptic properties of acriflavine and proflavine, and brilliant green: with special reference to suitability for wound therapy. British Medical Journal 1917, 2 (2951), 70. 41. Ueno, T.; Nagano, T., Fluorescent probes for sensing and imaging. Nature Methods 2011, 8 (8), 642-645. 42. Zhu, H.; Fan, J.; Du, J.; Peng, X., Fluorescent probes for sensing and imaging within specific cellular organelles. Accounts of Chemical Research 2016, 49 (10), 2115-2126. 43. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New strategies for fluorescent probe design in medical diagnostic imaging. Chemical Reviews 2010, 110 (5), 2620-2640. 44. Wei, J.; Liu, Y.; Yu, J.; Chen, L.; Luo, M.; Yang, L.; Li, P.; Li, S.; Zhang, X. H., Conjugated polymers: Optical toolbox for bioimaging and cancer therapy. Small 2021, 17 (43), 2103127. 45. Stokes, G. G., XXX. On the change of refrangibility of light. Philosophical transactions of the Royal Society of London 1852, (142), 463-562. 46. Jun, J. V.; Chenoweth, D. M.; Petersson, E. J., Rational design of small molecule fluorescent probes for biological applications. Organic & Biomolecular Chemistry 2020, 18 (30), 5747-5763. 47. Fu, Y.; Finney, N. S., Small-molecule fluorescent probes and their design. RSC Advances 2018, 8 (51), 29051-29061. 48. Terai, T.; Nagano, T., Fluorescent probes for bioimaging applications. Current Opinion in Chemical Biology 2008, 12 (5), 515-521. 49. Lou, Z.; Li, P.; Han, K., Redox-responsive fluorescent probes with different design strategies. Accounts of Chemical Research 2015, 48 (5), 1358-1368. 50. Cubitt, A. B.; Heim, R.; Adams, S. R.; Boyd, A. E.; Gross, L. A.; Tsien, R. Y., Understanding, improving and using green fluorescent proteins. Trends in Biochemical Sciences 1995, 20 (11), 448-455. 51. Chudakov, D. M.; Matz, M. V.; Lukyanov, S.; Lukyanov, K. A., Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews 2010, 90 (3), 1103-1163. 52. Zimmer, M., Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chemical Reviews 2002, 102 (3), 759-782. 53. Shaner, N. C.; Steinbach, P. A.; Tsien, R. Y., A guide to choosing fluorescent proteins. Nature Methods 2005, 2 (12), 905-909. 54. Feng, G.; Li, K.; Liu, J.; Ding, D.; Liu, B., Bright single‐chain conjugated polymer dots embedded nanoparticles for long‐term cell tracing and imaging. Small 2014, 10 (6), 1212-1219. 55. Feng, L.; Liu, L.; Lv, F.; Bazan, G. C.; Wang, S., Preparation and biofunctionalization of multicolor conjugated polymer nanoparticles for imaging and detection of tumor cells. Advanced Materials 2014, 26 (23), 3926-3930. 56. Chen, G.; Cao, Y.; Tang, Y.; Yang, X.; Liu, Y.; Huang, D.; Zhang, Y.; Li, C.; Wang, Q., Advanced near‐infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Advanced Science 2020, 7 (8), 1903783. 57. Jiang, Y.; Pu, K., Multimodal biophotonics of semiconducting polymer nanoparticles. Accounts of Chemical Research 2018, 51 (8), 1840-1849. 58. Zhen, X.; Pu, K.; Jiang, X., Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near‐infrared construction. Small 2021, 17 (6), 2004723. 59. Reisch, A.; Klymchenko, A. S., Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small 2016, 12 (15), 1968-1992. 60. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271 (5251), 933-937. 61. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A., Chemistry and properties of nanocrystals of different shapes. Chemical Reviews 2005, 105 (4), 1025-1102. 62. Xia, Z.; Rao, J., Biosensing and imaging based on bioluminescence resonance energy transfer. Current Opinion in Biotechnology 2009, 20 (1), 37-44. 63. Filali, S.; Pirot, F.; Miossec, P., Biological applications and toxicity minimization of semiconductor quantum dots. Trends in Biotechnology 2020, 38 (2), 163-177. 64. Zhang, C.; Li, K., AIEgen‐based trackers for cancer research and regenerative medicine. Handbook of Aggregation‐Induced Emission 2022, 329-354. 65. Liang, G.; Wang, H.; Shi, H.; Wang, H.; Zhu, M.; Jing, A.; Li, J.; Li, G., Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. Journal of Nanobiotechnology 2020, 18, 1-22. 66. Wang, X.; Yu, W. W.; Zhang, J.; Aldana, J.; Peng, X.; Xiao, M., Photoluminescence upconversion in colloidal CdTe quantum dots. Physical Review B 2003, 68 (12), 125318. 67. Zhang, X.; Zhang, X.; Tao, L.; Chi, Z.; Xu, J.; Wei, Y., Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. Journal of Materials Chemistry B 2014, 2 (28), 4398-4414. 68. Zou, Z.; Luo, Z.; Xu, X.; Yang, S.; Qing, Z.; Liu, J.; Yang, R., Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. TrAC Trends in Analytical Chemistry 2020, 125, 115811. 69. Kasper, K., Ein konzentrationsumschlag der fluoreszenz. Z Phys Chem,(Munich) 1954, 1, 275-277. 70. Birks, J. B., Photophysics of aromatic molecules. 1970. 71. Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z., Aggregation‐induced emission: the whole is more brilliant than the parts. Advanced Materials 2014, 26 (31), 5429-5479. 72. Zhao, Z.; Lam, J. W.; Tang, B. Z., Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. Journal of Materials Chemistry 2012, 22 (45), 23726-23740. 73. Würthner, F., Aggregation‐induced emission (AIE): a historical perspective. Angewandte Chemie International Edition 2020, 59 (34), 14192-14196. 74. Hong, Y.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications 2009, (29), 4332-4353. 75. Hong, Y.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission. Chemical Society Reviews 2011, 40 (11), 5361-5388. 76. La, D. D.; Bhosale, S. V.; Jones, L. A.; Bhosale, S. V., Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Applied Materials & Interfaces 2017, 10 (15), 12189-12216. 77. He, J.; Xu, B.; Chen, F.; Xia, H.; Li, K.; Ye, L.; Tian, W., Aggregation-induced emission in the crystals of 9, 10-distyrylanthracene derivatives: the essential role of restricted intramolecular torsion. The Journal of Physical Chemistry C 2009, 113 (22), 9892-9899. 78. ZhiáSun, J.; ZhongáTang, B., Influence of the number and substitution position of phenyl groups on the aggregation-enhanced emission of benzene-cored luminogens. Chemical Communications 2015, 51 (23), 4830-4833. 79. Li, Y.-X.; Chen, Z.; Cui, Y.; Xia, G.-M.; Yang, X.-F., Substitution position directing the molecular packing, electronic structure, and aggregate emission property of bis [2-(9- anthracenyl) vinyl] benzene system. The Journal of Physical Chemistry C 2012, 116 (10), 6401-6408. 80. Li, Y.-X.; Jia, J.; Tao, X.-T., Intramolecular H⋯ H steric hindrance modulated aggregate packing and optoelectronic properties in 1-naphthyl, 9-anthryl end-capped styrylarylene derivatives. CrystEngComm 2012, 14 (8), 2843-2848. 81. Levell, J. W.; Ruseckas, A.; Henry, J. B.; Wang, Y.; Stretton, A. D.; Mount, A. R.; Galow, T. H.; Samuel, I. D., Fluorescence enhancement by symmetry breaking in a twisted triphenylene derivative. The Journal of Physical Chemistry A 2010, 114 (51), 13291-13295. 82. Jacky, W.; Herman, H.; ZhongáTang, B., Aggregation-induced emission and aggregation-promoted photochromism of bis (diphenylmethylene) dihydroacenes. Chemical Science 2015, 6 (6), 3538-3543. 83. Mullin, J. L.; Tracy, H. J.; Ford, J. R.; Keenan, S. R.; Fridman, F., Characteristics of aggregation induced emission in 1, 1-dimethyl-2, 3, 4, 5-tetraphenyl and 1, 1, 2, 3, 4, 5- hexaphenyl siloles and germoles. Journal of Inorganic and Organometallic Polymers and Materials 2007, 17, 201-213. 84. Tracy, H. J.; Mullin, J. L.; Klooster, W. T.; Martin, J. A.; Haug, J.; Wallace, S.; Rudloe, I.; Watts, K., Enhanced photoluminescence from group 14 metalloles in aggregated and solid solutions. Inorganic Chemistry 2005, 44 (6), 2003-2011. 85. Bandrowsky, T. L.; Carroll, J. B.; Braddock-Wilking, J., Synthesis, characterization, and crystal structures of 1, 1-disubstituted-2, 3, 4, 5-tetraphenylgermoles that exhibit aggregation-induced emission. Organometallics 2011, 30 (13), 3559-3569. 86. Feng, X.; Tong, B.; Shen, J.; Shi, J.; Han, T.; Chen, L.; Zhi, J.; Lu, P.; Ma, Y.; Dong, Y., Aggregation-induced emission enhancement of aryl-substituted pyrrole derivatives. The Journal of Physical Chemistry B 2010, 114 (50), 16731-16736. 87. Fukazawa, A.; Ichihashi, Y.; Yamaguchi, S., Intense fluorescence of 1-aryl-2, 3, 4, 5- tetraphenylphosphole oxides in the crystalline state. New Journal of Chemistry 2010, 34 (8), 1537-1540. 88. Sanji, T.; Shiraishi, K.; Tanaka, M., Sugar− phosphole oxide conjugates as “turn-on” luminescent sensors for lectins. ACS Applied Materials & Interfaces 2009, 1 (2), 270-273. 89. Cheng, X.; Li, D.; Zhang, Z.; Zhang, H.; Wang, Y., Organoboron compounds with morphology-dependent NIR emissions and dual-channel fluorescent ON/OFF switching. Organic Letters 2014, 16 (3), 880-883. 90. Dong, Y.; Lam, J. W.; Qin, A.; Li, Z.; Sun, J.; Sung, H. H.-Y.; Williams, I. D.; Tang, B. Z., Switching the light emission of (4-biphenylyl) phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. Chemical Communications 2007, (1), 40-42. 91. Upamali, K. A.; Estrada, L. A.; De, P. K.; Cai, X.; Krause, J. A.; Neckers, D. C., Carbazole-based cyano-stilbene highly fluorescent microcrystals. Langmuir 2011, 27 (5), 1573-1580. 92. An, B.-K.; Gierschner, J.; Park, S. Y., π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Accounts of Chemical Research 2012, 45 (4), 544-554. 93. Sasaki, S.; Drummen, G. P.; Konishi, G.-i., Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. Journal of Materials Chemistry C 2016, 4 (14), 2731-2743. 94. Wang, J.; Meng, Q.; Yang, Y.; Zhong, S.; Zhang, R.; Fang, Y.; Gao, Y.; Cui, X., Schiff base aggregation-induced emission luminogens for sensing applications: A review. ACS Sensors 2022, 7 (9), 2521-2536. 95. Liu, G.; Yang, M.; Wang, L.; Zheng, J.; Zhou, H.; Wu, J.; Tian, Y., Schiff base derivatives containing heterocycles with aggregation-induced emission and recognition ability. Journal of Materials Chemistry C 2014, 2 (15), 2684-2691. 96. Sedgwick, A. C.; Wu, L.; Han, H.-H.; Bull, S. D.; He, X.-P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J., Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews 2018, 47 (23), 8842-8880. 97. Tang, W.; Xiang, Y.; Tong, A., Salicylaldehyde azines as fluorophores of aggregation induced emission enhancement characteristics. The Journal of Organic Chemistry 2009, 74 (5), 2163-2166. 98. Beppu, T.; Kawata, S.; Aizawa, N.; Pu, Y. J.; Abe, Y.; Ohba, Y.; Katagiri, H., 2, 6‐Bis (arylsulfonyl) anilines as Fluorescent Scaffolds through Intramolecular Hydrogen Bonds: Solid‐State Fluorescence Materials and Turn‐On‐Type Probes Based on Aggregation‐Induced Emission. ChemPlusChem 2014, 79 (4), 536-545. 99. Natarajan, P., Luminescence of triarylphosphines and their application to detection of elemental chlorine in aqueous solution. Analytical Methods 2014, 6 (8), 2432-2435. 100. Strianese, M.; Pellecchia, C., Metal complexes as fluorescent probes for sensing biologically relevant gas molecules. Coordination Chemistry Reviews 2016, 318, 16-28. 101. Lim, M. H.; Lippard, S. J., Metal-based turn-on fluorescent probes for sensing nitric oxide. Accounts of Chemical Research 2007, 40 (1), 41-51. 102. Ma, D. L.; He, H. Z.; Leung, K. H.; Chan, D. S. H.; Leung, C. H., Bioactive luminescent transition‐metal complexes for biomedical applications. Angewandte Chemie International Edition 2013, 52 (30), 7666-7682. 103. Alam, P.; Das, P.; Climent, C.; Karanam, M.; Casanova, D.; Choudhury, A.; Alemany, P.; Jana, N. R.; Laskar, I., Facile tuning of the aggregation-induced emission wavelength in a common framework of a cyclometalated iridium (iii) complex: micellar encapsulated probe in cellular imaging. Journal of Materials Chemistry C 2014, 2 (28), 5615-5628. 104. Takac, S.; Stojanović, S., Characteristics of laser light. Medicinski Pregled 1999, 52 (1-2), 29-34. 105. Maharjan, N.; Zhou, W.; Zhou, Y.; Guan, Y.; Wu, N., Comparative study of 44 laser surface hardening of 50CrMo4 steel using continuous-wave laser and pulsed lasers with ms, ns, ps and fs pulse duration. Surface and Coatings Technology 2019, 366, 311-320. 106. Byer, R. L., Nonlinear optical phenomena and materials. Annual Review of Materials Science 1974, 4 (1), 147-190. 107. Sanderson, M. J.; Smith, I.; Parker, I.; Bootman, M. D., Fluorescence microscopy. Cold Spring Harbor Protocols 2014, 2014 (10), pdb. top071795. 108. Xu, M.; Wang, L. V., Photoacoustic imaging in biomedicine. Review of Scientific Instruments 2006, 77 (4), 041101. 109. Beard, P., Biomedical photoacoustic imaging. Interface focus 2011, 1 (4), 602-631. 110.Attia, A. B. E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.; Bi, R.; Ntziachristos, V.; Olivo, M., A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics 2019, 16, 100144. 111.Zhang, Y.; Hong, H.; Cai, W., Photoacoustic imaging. Cold Spring Harbor Protocols 2011, 2011 (9), pdb. top065508. 112.Cox, B.; Laufer, J.; Beard, P. In The challenges for quantitative photoacoustic imaging, Photons Plus Ultrasound: Imaging and Sensing 2009, SPIE: 2009; pp 294-302. 113.Zhang, J.; Ning, L.; Zeng, Z.; Pu, K., Development of second near-infrared photoacoustic imaging agents. Trends in Chemistry 2021, 3 (4), 305-317. 114.Du, J.; Yang, S.; Qiao, Y.; Lu, H.; Dong, H., Recent progress in near-infrared photoacoustic imaging. Biosensors and Bioelectronics 2021, 191, 113478. 115.Mallidi, S.; Luke, G. P.; Emelianov, S., Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends in Biotechnology 2011, 29 (5), 213-221. 116.Weber, J.; Beard, P. C.; Bohndiek, S. E., Contrast agents for molecular photoacoustic imaging. Nature methods 2016, 13 (8), 639-650. 117.Das, D.; Sharma, A.; Rajendran, P.; Pramanik, M., Another decade of photoacoustic imaging. Physics in Medicine & Biology 2021, 66 (5), 05TR01. 118.Fu, Q.; Zhu, R.; Song, J.; Yang, H.; Chen, X., Photoacoustic imaging: contrast agents and their biomedical applications. Advanced Materials 2019, 31 (6), 1805875. 119.Yang, X.; Stein, E. W.; Ashkenazi, S.; Wang, L. V., Nanoparticles for photoacoustic imaging. Wiley interdisciplinary reviews: nanomedicine and nanobiotechnology 2009, 1 (4), 360-368. 120. Wang, L. V.; Yao, J., A practical guide to photoacoustic tomography in the life sciences. Nature Methods 2016, 13 (8), 627-638. 121. Wang, L. V., Prospects of photoacoustic tomography. Medical Physics 2008, 35 (12), 5758-5767. 122. Xia, J.; Yao, J.; Wang, L. V., Photoacoustic tomography: principles and advances. Progress in Electromagnetics Research 2014, 147, 1-22. 123. Yao, J.; Wang, L. V., Photoacoustic microscopy. Laser & Photonics Reviews 2013, 7 (5), 758-778. 124. Jeon, S.; Kim, J.; Lee, D.; Baik, J. W.; Kim, C., Review on practical photoacoustic microscopy. Photoacoustics 2019, 15, 100141. 125. Erfanzadeh, M.; Zhu, Q., Photoacoustic imaging with low-cost sources; a review. Photoacoustics 2019, 14, 1-11. 126. So, P. T. In Multi-photon excitation fluorescence microscopy, Frontiers in Biomedical Engineering: Proceedings of the World Congress for Chinese Biomedical Engineers, Springer: 2003; pp 529-544. 127. Rumi, M.; Perry, J. W., Two-photon absorption: an overview of measurements and principles. Advances in Optics and Photonics 2010, 2 (4), 451-518. 128. Dunn, K. W.; Young, P. A., Principles of multiphoton microscopy. Nephron Experimental Nephrology 2006, 103 (2), e33-e40. 129. Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W., Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proceedings of the National Academy of Sciences 1996, 93 (20), 10763-10768. 130. Wokosin, D. L.; Squirrell, J. M.; Eliceiri, K. W.; White, J. G., Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Review of Scientific Instruments 2003, 74 (1), 193-201. 131. Müller-Taubenberger, A.; Anderson, K. I., Recent advances using green and red fluorescent protein variants. Applied Microbiology and Biotechnology 2007, 77, 1-12.132. Lefort, C., A review of biomedical multiphoton microscopy and its laser sources. Journal of Physics D: Applied Physics 2017, 50 (42), 423001. 133. So, P. T.; Dong, C. Y.; Masters, B. R.; Berland, K. M., Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering 2000, 2 (1), 399-429. 134. Chen, L.; Chen, M.; Zhou, Y.; Ye, C.; Liu, R., NIR photosensitizer for two photon fluorescent imaging and photodynamic therapy of tumor. Frontiers in Chemistry 2021, 9, 629062. 135. Chen, Y.; Guan, R.; Zhang, C.; Huang, J.; Ji, L.; Chao, H., Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coordination Chemistry Reviews 2016, 310, 16-40. 136. He, S.; Song, J.; Qu, J.; Cheng, Z., Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chemical Society Reviews 2018, 47 (12), 4258-4278. 137. Muthu, M. S.; Leong, D. T.; Mei, L.; Feng, S.-S., Nanotheranostics˗ application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014, 4 (6), 660. 138. Melancon, M. P.; Zhou, M.; Li, C., Cancer theranostics with near-infrared light activatable multimodal nanoparticles. Accounts of Chemical Research 2011, 44 (10), 947-956. 139. Huynh, E.; Zheng, G., Engineering multifunctional nanoparticles: all‐in‐one versus one‐for‐all. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2013, 5 (3), 250-265. 140. Ng, K. K.; Zheng, G., Molecular interactions in organic nanoparticles for phototheranostic applications. Chemical Reviews 2015, 115 (19), 11012-11042. 141. Liu, S.; Li, Y.; Kwok, R. T.; Lam, J. W.; Tang, B. Z., Structural and process controls of AIEgens for NIR-II theranostics. Chemical Science 2021, 12 (10), 3427-3436. 142. Feng, G.; Zhang, G.-Q.; Ding, D., Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews 2020, 49 (22), 8179-8234. 143. Xu, Y.; Dang, D.; Zhu, H.; Jing, X.; Zhu, X.; Zhang, N.; Li, C.; Zhao, Y.; Zhang, P.; Yang, Z., Boosting the AIEgen-based photo-theranostic platform by balancing radiative decay and non-radiative decay. Materials Chemistry Frontiers 2021, 5 (11), 4182-4192. 144. Wen, H.; Zhang, Z.; Kang, M.; Li, H.; Xu, W.; Guo, H.; Li, Y.; Tan, Y.; Wen, Z.; Wu, Q., One-for-all phototheranostics: Single component AIE dots as multi-modality theranostic agent for fluorescence-photoacoustic imaging-guided synergistic cancer therapy. Biomaterials 2021, 274, 120892. 145. Zhang, Z.; Xu, W.; Kang, M.; Wen, H.; Guo, H.; Zhang, P.; Xi, L.; Li, K.; Wang, L.; Wang, D., An all‐round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging‐guided synergistic therapy. Advanced Materials 2020, 32 (36), 2003210. 146. Lu, H.; Zheng, Y.; Zhao, X.; Wang, L.; Ma, S.; Han, X.; Xu, B.; Tian, W.; Gao, H., Highly efficient far Red/Near‐infrared solid fluorophores: aggregation‐induced emission, intramolecular charge transfer, twisted molecular conformation, and bioimaging applications. Angewandte Chemie International Edition 2016, 55 (1), 155-159. 147. Yan, D.; Xie, W.; Zhang, J.; Wang, L.; Wang, D.; Tang, B. Z., Donor/π‐Bridge Manipulation for Constructing a Stable NIR‐II Aggregation‐Induced Emission Luminogen with Balanced Phototheranostic Performance. Angewandte Chemie 2021, 133 (51), 26973-26980. 148. Gao, H.; Duan, X.; Jiao, D.; Zeng, Y.; Zheng, X.; Zhang, J.; Ou, H.; Qi, J.; Ding, D., Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal‐to‐Acoustic Conversion Efficiency for Adaptive Image‐Guided Cancer Surgery. Angewandte Chemie 2021, 133 (38), 21215-21223. 149. Li, J.; Wang, J.; Zhang, J.; Han, T.; Hu, X.; Lee, M. M.; Wang, D.; Tang, B. Z., A facile strategy of boosting photothermal conversion efficiency through state transformation for cancer therapy. Advanced Materials 2021, 33 (51), 2105999.1.Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. K., Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation 2012, 2 (1), 2. 2. Zhang, Y.; Chan, H. F.; Leong, K. W., Advanced materials and processing for drug delivery: the past and the future. Advanced Drug Delivery Reviews 2013, 65 (1), 104-120. 3. Tran, S.; DeGiovanni, P.-J.; Piel, B.; Rai, P., Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine 2017, 6, 1-21. 4. Yih, T.; Al‐Fandi, M., Engineered nanoparticles as precise drug delivery systems. Journal of Cellular Biochemistry 2006, 97 (6), 1184-1190. 5. Angell, C.; Xie, S.; Zhang, L.; Chen, Y., DNA nanotechnology for precise control over drug delivery and gene therapy. Small 2016, 12 (9), 1117-1132. 6. Tao, Y.; Chan, H. F.; Shi, B.; Li, M.; Leong, K. W., Light: a magical tool for controlled drug delivery. Advanced Functional Materials 2020, 30 (49), 2005029. 7. Madara, J. L., Regulation of the movement of solutes across tight junctions. Annual Review of Physiology 1998, 60 (1), 143-159. 8. Polacheck, W. J.; Kutys, M. L.; Yang, J.; Eyckmans, J.; Wu, Y.; Vasavada, H.; Hirschi, K. K.; Chen, C. S., A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 2017, 552 (7684), 258-262. 9. Kim, S. M.; Faix, P. H.; Schnitzer, J. E., Overcoming key biological barriers to cancer drug delivery and efficacy. Journal of Controlled Release 2017, 267, 15-30. 10. Spadoni, I.; Zagato, E.; Bertocchi, A.; Paolinelli, R.; Hot, E.; Di Sabatino, A.; Caprioli, F.; Bottiglieri, L.; Oldani, A.; Viale, G., A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015, 350 (6262), 830-834. 11. Simmons, S.; Erfinanda, L.; Bartz, C.; Kuebler, W. M., Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. The Journal of Physiology 2019, 597 (4), 997-1021. 12. Aryal, M.; Arvanitis, C. D.; Alexander, P. M.; McDannold, N., Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Advanced Drug Delivery Reviews 2014, 72, 94-109. 13. Qiu, Y.; Tong, S.; Zhang, L.; Sakurai, Y.; Myers, D. R.; Hong, L.; Lam, W. A.; Bao, G., Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nature Communications 2017, 8 (1), 15594. 14. Ai, X.; Mu, J.; Xing, B., Recent advances of light-mediated theranostics. Theranostics 2016, 6 (13), 2439. 15. Ge, J.; Jia, Q.; Liu, W.; Lan, M.; Zhou, B.; Guo, L.; Zhou, H.; Zhang, H.; Wang, Y.; Gu, Y., Theranostics: Carbon Dots with Intrinsic Theranostic Properties for Bioimaging, Red‐Light‐Triggered Photodynamic/Photothermal Simultaneous Therapy In Vitro and In Vivo (Adv. Healthcare Mater. 6/2016). Advanced Healthcare Materials 2016, 5 (6), 744-744. 16. Son, J.; Yi, G.; Yoo, J.; Park, C.; Koo, H.; Choi, H. S., Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Advanced Drug Delivery Reviews 2019, 138, 133-147. 17. del Rosal, B.; Jia, B.; Jaque, D., Beyond phototherapy: recent advances in multifunctional fluorescent nanoparticles for light‐triggered tumor theranostics. Advanced Functional Materials 2018, 28 (44), 1803733. 18. Hong, G.; Antaris, A. L.; Dai, H., Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering 2017, 1 (1), 0010. 19. Chen, G.; Cao, Y.; Tang, Y.; Yang, X.; Liu, Y.; Huang, D.; Zhang, Y.; Li, C.; Wang, Q., Advanced near‐infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Advanced Science 2020, 7 (8), 1903783. 20. Duan, Y.; Liu, B., Recent advances of optical imaging in the second near‐infrared window. Advanced Materials 2018, 30 (47), 1802394. 21. Yang, Y.; Aw, J.; Xing, B., Nanostructures for NIR light-controlled therapies. Nanoscale 2017, 9 (11), 3698-3718. 22. He, S.; Song, J.; Qu, J.; Cheng, Z., Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chemical Society Reviews 2018, 47 (12), 4258-4278. 8823. Zhu, S.; Tian, R.; Antaris, A. L.; Chen, X.; Dai, H., Near‐infrared‐II molecular dyes for cancer imaging and surgery. Advanced Materials 2019, 31 (24), 1900321. 24. Qiu, M.; Wang, D.; Liang, W.; Liu, L.; Zhang, Y.; Chen, X.; Sang, D. K.; Xing, C.; Li, Z.; Dong, B., Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proceedings of the National Academy of Sciences 2018, 115 (3), 501-506. 25. Sarkar, S.; Levi-Polyachenko, N., Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Advanced Drug Delivery Reviews 2020, 163, 40-64. 26. Yang, G.; Liu, J.; Wu, Y.; Feng, L.; Liu, Z., Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination Chemistry Reviews 2016, 320, 100-117. 27. Acharya, S.; Sahoo, S. K., PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews 2011, 63 (3), 170-183. 28. Stylianopoulos, T., EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Therapeutic Delivery 2013, 4 (4), 421-423. 29. Gu, Z.; Wang, Q.; Shi, Y.; Huang, Y.; Zhang, J.; Zhang, X.; Lin, G., Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. Journal of Controlled Release 2018, 286, 369-380. 30. Blanco, E.; Shen, H.; Ferrari, M., Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology 2015, 33 (9), 941-951. 31. Yue, S.; Lin, F.; Zhang, Q.; Epie, N.; Dong, S.; Shan, X.; Liu, D.; Chu, W.- K.; Wang, Z.; Bao, J., Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proceedings of the National Academy of Sciences 2019, 116 (14), 6580-6585. 32. Wang, Y.; Zhang, Q.; Zhu, Z.; Lin, F.; Deng, J.; Ku, G.; Dong, S.; Song, S.; Alam, M. K.; Liu, D., Laser streaming: Turning a laser beam into a flow of liquid. Science Advances 2017, 3 (9), e1700555. 33. Zharov, V.; Malinsky, T.; Alekhnovich, V., Photoacoustic manipulation of particles and cells. Review of Scientific Instruments 2003, 74 (1), 779-781. 34. Pu, K.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J.; Gambhir, S. S.; Bao, Z.; Rao, J., Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nature Nanotechnology 2014, 9 (3), 233-239. 35. Li, J.; Rao, J.; Pu, K., Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018, 155, 217-235. 36. Jiang, Y.; Upputuri, P. K.; Xie, C.; Zeng, Z.; Sharma, A.; Zhen, X.; Li, J.; Huang, J.; Pramanik, M.; Pu, K., Metabolizable semiconducting polymer nanoparticles for second near‐infrared photoacoustic imaging. Advanced Materials 2019, 31 (11), 1808166. 37. Zha, M.; Lin, X.; Ni, J. S.; Li, Y.; Zhang, Y.; Zhang, X.; Wang, L.; Li, K., An Ester‐Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIR‐ II Photoacoustic Performance for Monitoring of Tumor Growth. Angewandte Chemie International Edition 2020, 59 (51), 23268-23276. 38. Beard, P., Biomedical photoacoustic imaging. Interface focus 2011, 1 (4), 602-631. 39. Wang, L. V.; Hu, S., Photoacoustic tomography: in vivo imaging from organelles to organs. Science 2012, 335 (6075), 1458-1462. 40. Yao, J.; Wang, L.; Yang, J.-M.; Maslov, K. I.; Wong, T. T.; Li, L.; Huang, C.- H.; Zou, J.; Wang, L. V., High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nature Methods 2015, 12 (5), 407-410. 41. Razansky, D.; Distel, M.; Vinegoni, C.; Ma, R.; Perrimon, N.; Köster, R. W.; Ntziachristos, V., Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nature Photonics 2009, 3 (7), 412-417. 42. Zhang, J.; Yang, S.; Ji, X.; Zhou, Q.; Xing, D., Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation. Journal of the American College of Cardiology 2014, 64 (4), 385-390. 43. Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.; Jokerst, J. V.; Pu, K., Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nature Biotechnology 2017, 35 (11), 1102-1110. 44. Chen, H.; Wang, F.; Liu, M.; Qian, M.; Men, X.; Yao, C.; Xi, L.; Qin, W.; Qin, G.; Wu, C., Near‐Infrared Broadband Polymer‐Dot Modulator with High Optical Nonlinearity for Ultrafast Pulsed Lasers. Laser & Photonics Reviews 2019, 13 (2), 1800326. 45. Yin, C.; Wen, G.; Liu, C.; Yang, B.; Lin, S.; Huang, J.; Zhao, P.; Wong, S. H. D.; Zhang, K.; Chen, X., Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window. ACS Nano 2018, 12 (12), 12201-12211. 46. Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J.; Liu, R.; Liu, J.; Zhang, X.; Liu, H.; Liu, B., Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports 2013, 3 (1), 1150. 47. Li, K.; Zhu, Z.; Cai, P.; Liu, R.; Tomczak, N.; Ding, D.; Liu, J.; Qin, W.; Zhao, Z.; Hu, Y., Organic dots with aggregation-induced emission (AIE dots) characteristics for dual-color cell tracing. Chemistry of Materials 2013, 25 (21), 4181-4187. 48. Hong, G.; Zou, Y.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X.; Chen, C.; Liu, B.; He, Y., Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Communications 2014, 5 (1), 4206. 49. Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J., Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2008, 2 (11), 2415-2423. 50. Wu, C.; Chiu, D. T., Highly fluorescent semiconducting polymer dots for biology and medicine. Angewandte Chemie International Edition 2013, 52 (11), 3086-3109. 51. Jin, G.; Mao, D.; Cai, P.; Liu, R.; Tomczak, N.; Liu, J.; Chen, X.; Kong, D.; Ding, D.; Liu, B., Conjugated polymer nanodots as ultrastable long‐term trackers to understand mesenchymal stem cell therapy in skin regeneration. Advanced Functional Materials 2015, 25 (27), 4263-4273. 52. Yang, H.; Qin, X.; Wang, H.; Zhao, X.; Liu, Y.; Wo, H.-T.; Liu, C.; Nishiga, M.; Chen, H.; Ge, J., An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano 2019, 13 (9), 9880-9894. 53. Pritzker, R. N.; Rohrer, T. E., Laser safety: standards and guidelines. Handbook of Lasers in Dermatology 2014, 11-28. 54. Danhier, F., To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? Journal of Controlled Release 2016, 244, 108-121. 55. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C., Analysis of nanoparticle delivery to tumours. Nature reviews materials 2016, 1 (5), 1-12. 56. Carmeliet, P.; Jain, R. K., Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473 (7347), 298-307. 57. Jain, R. K.; Stylianopoulos, T., Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology 2010, 7 (11), 653-664.1. Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery 2008, 7 (9), 771-782. 2. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer 2005, 5 (3), 161-171. 3. Zhao, Z.; Zhang, H.; Lam, J. W.; Tang, B. Z., Aggregation‐induced emission: new vistas at the aggregate level. Angewandte Chemie International Edition 2020, 59 (25), 9888-9907. 4. Zhao, Z.; He, W.; Tang, B. Z., Aggregate Materials beyond AIEgens. Accounts of Materials Research 2021, 2 (12), 1251-1260. 5. Junghanns, J.-U. A.; Müller, R. H., Nanocrystal technology, drug delivery and clinical applications. International Journal of Nanomedicine 2008, 3 (3), 295-310. 6. Muller, R. H.; Keck, C. M., Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. Journal of Biotechnology 2004, 113 (1-3), 151-170. 7. Hu, R.; Zhang, G.; Qin, A.; Tang, B. Z., Aggregation-induced emission (AIE): emerging technology based on aggregate science. Pure and Applied Chemistry 2021, 93 (12), 1383-1402. 8. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z., Aggregation-induced emission: together we shine, united we soar! Chemical Reviews 2015, 115 (21),11718-11940. 9. Ding, D.; Li, K.; Liu, B.; Tang, B. Z., Bioprobes based on AIE fluorogens. Accounts of Chemical Research 2013, 46 (11), 2441-2453. 10. Zhang, H.; Zhao, Z.; Turley, A. T.; Wang, L.; McGonigal, P. R.; Tu, Y.; Li, Y.; Wang, Z.; Kwok, R. T.; Lam, J. W., Aggregate science: from structures to properties. Advanced Materials 2020, 32 (36), 2001457. 11. Zhao, Z.; Tang, B. Z., AIE study: a stepping stone to aggregate science. National Science Review 2021, 8 (6), nwab079. 12. Zheng, X.; Peng, Q.; Zhu, L.; Xie, Y.; Huang, X.; Shuai, Z., Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study. Nanoscale 2016, 8 (33), 15173-15180. 13. Zheng, X.; Peng, Q., Understanding the AIE Mechanism at the Molecular Level. Handbook of Aggregation‐Induced Emission 2022, 27-53. 14. Xie, H.; Zhang, J.; Kwok, R. T.; Lam, J. W.; Li, Z.; Tang, B. Z., The roles of packing modes in manipulating gel stability and luminescence behavior in fluorescent supramolecular gels. APL Materials 2022, 10 (8), 080905. 15. Smith, B. R.; Gambhir, S. S., Nanomaterials for in vivo imaging. Chemical Reviews 2017, 117 (3), 901-986. 16. Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X., Rethinking cancer nanotheranostics. Nature Reviews Materials 2017, 2 (7), 1-18. 17. Ng, K. K.; Zheng, G., Molecular interactions in organic nanoparticles for phototheranostic applications. Chemical Reviews 2015, 115 (19), 11012-11042. 18. Gao, D.; Guo, X.; Zhang, X.; Chen, S.; Wang, Y.; Chen, T.; Huang, G.; Gao, Y.; Tian, Z.; Yang, Z., Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Materials Today Bio 2020, 5, 100035. 19. Thangudu, S.; Kaur, N.; Korupalli, C.; Sharma, V.; Kalluru, P.; Vankayala, R., Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomaterials Science 2021, 9 (16), 5472-5483. 20. Vankayala, R.; Hwang, K. C., Near‐infrared‐light‐activatable nanomaterial‐mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Advanced Materials 2018, 30 (23), 1706320. 21. Cai, Y.; Si, W.; Huang, W.; Chen, P.; Shao, J.; Dong, X., Organic dye based nanoparticles for cancer phototheranostics. Small 2018, 14 (25), 1704247. 22. Cheng, P.; Pu, K., Activatable phototheranostic materials for imaging-guided cancer therapy. ACS Applied Materials & Interfaces 2019, 12 (5), 5286-5299. 23. Huynh, E.; Zheng, G., Engineering multifunctional nanoparticles: all‐in‐one versus one‐for‐all. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2013, 5 (3), 250-265. 24. Yan, C.; Zhang, Y.; Guo, Z., Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews 2021, 427, 213556. 25. Hong, G.; Antaris, A. L.; Dai, H., Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering 2017, 1 (1), 0010. 26. Chen, G.; Cao, Y.; Tang, Y.; Yang, X.; Liu, Y.; Huang, D.; Zhang, Y.; Li, C.; Wang, Q., Advanced near‐infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Advanced Science 2020, 7 (8), 1903783. 27. Xu, W.; Zhang, Z.; Kang, M.; Guo, H.; Li, Y.; Wen, H.; Lee, M. M.; Wang, Z.; Kwok, R. T.; Lam, J. W., Making the best use of excited-state energy: Multimodality theranostic systems based on second near-infrared (NIR-II) aggregation-induced emission luminogens (AIEgens). ACS Materials Letters 2020, 2 (8), 1033-1040. 28. Liu, S.; Li, Y.; Kwok, R. T.; Lam, J. W.; Tang, B. Z., Structural and process controls of AIEgens for NIR-II theranostics. Chemical Science 2021, 12 (10), 3427-3436. 29. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C., Analysis of nanoparticle delivery to tumours. Nature Reviews Materials 2016, 1 (5), 1-12. 30. Izci, M.; Maksoudian, C.; Manshian, B. B.; Soenen, S. J., The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chemical Reviews 2021, 121 (3), 1746-1803. 31. Sheth, V.; Wang, L.; Bhattacharya, R.; Mukherjee, P.; Wilhelm, S., Strategies for delivering nanoparticles across tumor blood vessels. Advanced Functional Materials 2021, 31 (8), 2007363. 32. Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A. M.; Sindhwani, S.; Zhang, Y.; Chen, Y. Y.; MacMillan, P.; Chan, W. C., Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018, 12 (8), 8423-8435. 33. Yue, S.; Lin, F.; Zhang, Q.; Epie, N.; Dong, S.; Shan, X.; Liu, D.; Chu, W.- K.; Wang, Z.; Bao, J., Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proceedings of the National Academy of Sciences 2019, 116 (14), 6580-6585. 34. Wang, Y.; Zhang, Q.; Zhu, Z.; Lin, F.; Deng, J.; Ku, G.; Dong, S.; Song, S.; Alam, M. K.; Liu, D., Laser streaming: Turning a laser beam into a flow of liquid. Science Advances 2017, 3 (9), e1700555. 35. Zharov, V.; Malinsky, T.; Alekhnovich, V., Photoacoustic manipulation of particles and cells. Review of Scientific Instruments 2003, 74 (1), 779-781. 36. Qi, W.; Li, T.; Zhang, C.; Liu, F.; Wang, J.; Chen, D.; Fang, X.; Wu, C.; Li, K.; Xi, L., Light‐Controlled Precise Delivery of NIR‐Responsive Semiconducting Polymer Nanoparticles with Promoted Vascular Permeability. Advanced Healthcare Materials 2021, 10 (19), 2100569. 37. Wang, J.; Li, T.; Ni, J. S.; Guo, H.; Kang, T.; Li, Z.; Zha, M.; Lu, S.; Zhang, C.; Qi, W., Photoacoustic Force‐Guided Precise and Fast Delivery of Nanomedicine with Boosted Therapeutic Efficacy. Advanced Science 2021, 8 (16), 2100228. 38. Kang, T.; Ni, J.-S.; Li, T.; Wang, J.; Li, Z.; Li, Y.; Zha, M.; Zhang, C.; Wu, X.; Guo, H., Efficient and precise delivery of microRNA by photoacoustic force generated from semiconducting polymer-based nanocarriers. Biomaterials 2021, 275, 120907. 39. Xu, S.; Duan, Y.; Liu, B., Precise molecular design for high‐performance luminogens with aggregation‐induced emission. Advanced Materials 2020, 32 (1), 1903530. 40. Ishi-i, T.; Ikeda, K.; Ogawa, M.; Kusakaki, Y., Light-emitting properties of donor-acceptor and donor–acceptor–donor dyes in solution, solid, and aggregated states: Structure-property relationship of emission behavior. RSC Advances 2015, 5 (108), 89171-89187. 41. Feng, G.; Zhang, G.-Q.; Ding, D., Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews 2020, 49 (22), 8179-8234. 42. Xu, W.; Wang, D.; Tang, B. Z., NIR‐II AIEgens: a win–win integration towards bioapplications. Angewandte Chemie International Edition 2021, 60 (14), 7476-7487. 43. Che, J.; I Okeke, C.; Hu, Z.-B.; Xu, J., DSPE-PEG: a distinctive component in drug delivery system. Current Pharmaceutical Design 2015, 21 (12), 1598-1605. 44. Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J.; Liu, R.; Liu, J.; Zhang, X.; Liu, H.; Liu, B., Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Scientific Reports 2013, 3 (1), 1150. 45. Yan, D.; Xie, W.; Zhang, J.; Wang, L.; Wang, D.; Tang, B. Z., Donor/π‐Bridge Manipulation for Constructing a Stable NIR‐II Aggregation‐Induced Emission Luminogen with Balanced Phototheranostic Performance. Angewandte Chemie 2021, 133 (51), 26973-26980. 46. Zhang, Z.; Xu, W.; Kang, M.; Wen, H.; Guo, H.; Zhang, P.; Xi, L.; Li, K.; Wang, L.; Wang, D., An all‐round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging‐guided synergistic therapy. Advanced Materials 2020, 32 (36), 2003210. 47. Sun, A.; Guo, H.; Gan, Q.; Yang, L.; Liu, Q.; Xi, L., Evaluation of visible NIR-I and NIR-II light penetration for photoacoustic imaging in rat organs. Optics Express 2020, 28(6), 9002-9013. 48. Gao, S.; Wei, G.; Zhang, S.; Zheng, B.; Xu, J.; Chen, G.; Li, M.; Song, S.; Fu, W.; Xiao, Z., Albumin tailoring fluorescence and photothermal conversion effect of near-infrared-II fluorophore with aggregation-induced emission characteristics. Nature Communications 2019, 10 (1), 2206.1. Rivera, N.; Kaminer, I., Light–matter interactions with photonic quasiparticles. NatureReviews Physics 2020, 2 (10), 538-561. 2. Demchenko, A. P., Advanced Fluorescence Reporters in Chemistry and Biology II: molecular constructions, polymers and nanoparticles. Springer Science & Business Media: 2010; Vol. 9. 3. Demchenko, A. P., Advanced fluorescence reporters in chemistry and biology III: applications in sensing and imaging. Springer Science & Business Media: 2011; Vol. 10. 4. Kim, J.; Piao, Y.; Hyeon, T., Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews 2009, 38 (2), 372-390. 5. Mulder, W. J.; Griffioen, A. W.; Strijkers, G. J.; Cormode, D. P.; Nicolay, K.; Fayad, Z. A., Magnetic and fluorescent nanoparticles for multimodality imaging. 2007. 6. Yi, X.; Wang, F.; Qin, W.; Yang, X.; Yuan, J., Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. International Journal of nanomedicine 2014, 9, 1347. 7. Bell, J. D.; Murphy, J. A., Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium,(ii) iridium and (iii) organic photoredox agents. Chemical Society Reviews 2021, 50 (17), 9540-9685. 8. Wang, X.; Wang, F.; Sang, Y.; Liu, H., Full‐spectrum solar‐light‐activated photocatalysts for light–chemical energy conversion. Advanced Energy Materials 2017, 7(23), 1700473. 9. Kessel, D.; Reiners Jr, J., Light‐Activated Pharmaceuticals: Mechanisms and Detection. Israel Journal of Chemistry 2012, 52 (8‐9), 674-680. 10. Tao, Y.; Chan, H. F.; Shi, B.; Li, M.; Leong, K. W., Light: a magical tool for controlled drug delivery. Advanced functional materials 2020, 30 (49), 2005029. 11. Fast Delivery of Multifunctional NIR-II Theranostic Nanoaggregates Enabled by the Photoinduced Thermoacoustic Process. Advanced Science (Weinheim, Baden-wurttemberg, Germany) 2023, e2301104-e2301104. 12. Qi, W.; Li, T.; Zhang, C.; Liu, F.; Wang, J.; Chen, D.; Fang, X.; Wu, C.; Li, K.; Xi, L., Light‐Controlled Precise Delivery of NIR‐Responsive Semiconducting Polymer Nanoparticles with Promoted Vascular Permeability. Advanced Healthcare Materials 2021, 10 (19), 2100569. 13. Wang, J.; Li, T.; Ni, J. S.; Guo, H.; Kang, T.; Li, Z.; Zha, M.; Lu, S.; Zhang, C.; Qi, W., Photoacoustic Force‐Guided Precise and Fast Delivery of Nanomedicine with Boosted Therapeutic Efficacy. Advanced Science 2021, 8 (16), 2100228. 14. Kang, T.; Ni, J.-S.; Li, T.; Wang, J.; Li, Z.; Li, Y.; Zha, M.; Zhang, C.; Wu, X.; Guo, H., Efficient and precise delivery of microRNA by photoacoustic force generated from semiconducting polymer-based nanocarriers. Biomaterials 2021, 275, 120907. 15. Zhang, H.; Zhao, Z.; Turley, A. T.; Wang, L.; McGonigal, P. R.; Tu, Y.; Li, Y.; Wang, Z.; Kwok, R. T.; Lam, J. W., Aggregate science: from structures to properties. Advanced Materials 2020, 32 (36), 2001457. 16. Tang, B. Z., Aggregology: Exploration and innovation at aggregate level. Wiley Online Library: 2020; Vol. 1, pp 4-5. 17. Zhao, Z.; Zhang, H.; Lam, J. W.; Tang, B. Z., Aggregation‐induced emission: new vistas at the aggregate level. Angewandte Chemie International Edition 2020, 59 (25), 9888-9907. 18. Zhao, Z.; He, W.; Tang, B. Z., Aggregate Materials beyond AIEgens. Accounts of Materials Research 2021, 2 (12), 1251-1260. 19. Fenno, L.; Yizhar, O.; Deisseroth, K., The development and application of optogenetics. Annual Review of Neuroscience 2011, 34, 389-412. 20. Yizhar, O.; Fenno, L. E.; Davidson, T. J.; Mogri, M.; Deisseroth, K., Optogenetics in neural systems. Neuron 2011, 71 (1), 9-34. 21. Guru, A.; Post, R. J.; Ho, Y.-Y.; Warden, M. R., Making sense of optogenetics. International Journal of Neuropsychopharmacology 2015, 18 (11), pyv079. 22. Häusser, M., Optogenetics: the age of light. Nature methods 2014, 11 (10), 1012-1014. 23. Kim, C. K.; Adhikari, A.; Deisseroth, K., Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience 2017, 18 (4), 222-235. 24. Dugué, G. P.; Akemann, W.; Knöpfel, T., A comprehensive concept of optogenetics. Progress in Brain Research 2012, 196, 1-28. 25. Duebel, J.; Marazova, K.; Sahel, J.-A., Optogenetics. Current Opinion in Ophthalmology 2015, 26 (3), 226. 26. Pastrana, E., Optogenetics: controlling cell function with light. Nature Methods 2011, 8 (1), 24-25. 27. Mohanty, S. K.; Lakshminarayananan, V., Optical techniques in optogenetics. Journal of Modern Optics 2015, 62 (12), 949-970. 28. Bansal, A.; Shikha, S.; Zhang, Y., Towards translational optogenetics. Nature Biomedical Engineering 2022, 1-21. 29. Yu, N.; Huang, L.; Zhou, Y.; Xue, T.; Chen, Z.; Han, G., Near‐infrared‐light activatable nanoparticles for deep‐tissue‐penetrating wireless optogenetics. Advanced Healthcare Materials 2019, 8 (6), 1801132. 30. Papagiakoumou, E., Optical developments for optogenetics. Biology of the Cell 2013, 105 (10), 443-464. 31. Wang, Z.; Hu, M.; Ai, X.; Zhang, Z.; Xing, B., Near‐infrared manipulation of membrane ion channels via upconversion optogenetics. Advanced Biosystems 2019, 3 (1), 1800233. 32. Pan, H.; Wang, H.; Yu, J.; Huang, X.; Hao, Y.; Zhang, C.; Ji, W.; Yang, M.; Gong, X.; Wu, X., Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem. Biomaterials 2019, 199, 22-31. 33. Lin, Y.; Yao, Y.; Zhang, W.; Fang, Q.; Zhang, L.; Zhang, Y.; Xu, Y., Applications of upconversion nanoparticles in cellular optogenetics. Acta Biomaterialia 2021, 135, 1-12. 34. Zou, L.; Xu, K.; Tian, H.; Fang, Y., Remote neural regulation mediated by nanomaterials. Nanotechnology 2022, 33 (27), 272002. 35. Liang, G.; Wang, H.; Shi, H.; Wang, H.; Zhu, M.; Jing, A.; Li, J.; Li, G., Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. Journal of Nanobiotechnology 2020, 18, 1-22. 36. Borse, S.; Rafique, R.; Murthy, Z.; Park, T. J.; Kailasa, S. K., Applications of upconversion nanoparticles in analytical and biomedical sciences: A review. Analyst 2022. 37. All, A. H.; Zeng, X.; Teh, D. B. L.; Yi, Z.; Prasad, A.; Ishizuka, T.; Thakor, N.; Hiromu, Y.; Liu, X., Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation. Advanced Materials 2019, 31 (41), 1803474. 38. Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A. J.; Hashimotodani, Y.; Kano, M.; Iwasaki, H., Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 2018, 359 (6376), 679-684. 39. Izquierdo-Serra, M.; Gascón-Moya, M.; Hirtz, J. J.; Pittolo, S.; Poskanzer, K. E.; Ferrer, E. r.; Alibés, R.; Busqué, F.; Yuste, R.; Hernando, J., Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. Journal of the American Chemical Society 2014, 136 (24), 8693-8701. 40. Ellis-Davies, G. C., Two-photon microscopy for chemical neuroscience. ACS Chemical Neuroscience 2011, 2 (4), 185-197. 41. Mulligan, S. J.; MacVicar, B. A.; Méndez-Vilas, A.; Díaz, J., Two-photon fluorescence microscopy: basic principles, advantages and risks. Modern Research and Educational Topics in Microscopy 2007, 1, 881-889. 42. Helmchen, F.; Denk, W., Deep tissue two-photon microscopy. Nature Methods 2005, 2 (12), 932-940. 43. Lin, T.-C.; Chung, S.-J.; Kim, K.-S.; Wang, X.; He, G. S.; Swiatkiewicz, J.; Pudavar, H. E.; Prasad, P. N., Organics and polymers with high two-photon activities and their applications. Polymers for Photonics Applications II: Nonlinear Optical, Photorefractive and Two-Photon Absorption Polymers 2003, 157-193. 44. McKenzie, L. K.; Bryant, H. E.; Weinstein, J. A., Transition metal complexes as photosensitisers in one-and two-photon photodynamic therapy. Coordination Chemistry Reviews 2019, 379, 2-29. 45. Chen, Y.; Guan, R.; Zhang, C.; Huang, J.; Ji, L.; Chao, H., Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coordination Chemistry Reviews 2016, 310, 16-40. 46. Bejoymohandas, K.; Kumar, A.; Varughese, S.; Varathan, E.; Subramanian, V.; Reddy, M., Photophysical and electroluminescence properties of bis (2′, 6′-difluoro-2, 3′- bipyridinato-N, C 4′) iridium (picolinate) complexes: Effect of electron-withdrawing and electron-donating group substituents at the 4′ position of the pyridyl moiety of the cyclometalated ligand. Journal of Materials Chemistry C 2015, 3 (28), 7405-7420. 47. Cai, J.-G.; Yu, Z.-T.; Yuan, Y.-J.; Li, F.; Zou, Z.-G., Dinuclear iridium (III) complexes containing bibenzimidazole and their application to water photoreduction. ACS Catalysis 2014, 4 (6), 1953-1963. 48. Li, G.; Lin, Q.; Sun, L.; Feng, C.; Zhang, P.; Yu, B.; Chen, Y.; Wen, Y.; Wang, H.; Ji, L., A mitochondrial targeted two-photon iridium (III) phosphorescent probe for selective detection of hypochlorite in live cells and in vivo. Biomaterials 2015, 53, 285-295. 49. Ai, X.; Lyu, L.; Zhang, Y.; Tang, Y.; Mu, J.; Liu, F.; Zhou, Y.; Zuo, Z.; Liu, G.; Xing, B., Remote regulation of membrane channel activity by site‐specific localization of lanthanide‐doped upconversion nanocrystals. Angewandte Chemie International Edition 2017, 56 (11), 3031-3035. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/549667 |
专题 | 工学院_生物医学工程系 |
推荐引用方式 GB/T 7714 |
Zhang C. Light-Controlled Performance of Aggregate-Based Fluorescent Materials: from Aggregate Science Study to Exploration of Their Biological Applications[D]. 香港. 香港科技大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11951001-张晨-生物医学工程系.(12070KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[张晨]的文章 |
百度学术 |
百度学术中相似的文章 |
[张晨]的文章 |
必应学术 |
必应学术中相似的文章 |
[张晨]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论