中文版 | English
题名

STUDY OF COMPOSITE STRUCTURAL SUPERCAPACITORS BASED ON MODIFIED CARBON FIBER ELECTRODES

姓名
姓名拼音
ZHOU Hanmo
学号
12068032
学位类型
博士
学位专业
应用物理
导师
周利民
导师单位
系统设计与智能制造学院
外机构导师
黄海涛
外机构导师单位
香港理工大学
论文答辩日期
2023-08-16
论文提交日期
2023-08-25
学位授予单位
香港理工大学
学位授予地点
香港
摘要

Composite structural supercapacitors (CSSs), which provide both mechanical load-bearing capability and electrochemical energy storage capacity, have been developed rapidly in the past two decades. By serving as both structural elements and energy storage units in a single engineering structure, CSSs have the potential to reduce the volume and mass of overall systems. Despite the potential benefits of CSSs for numerous engineering applications, current development efforts have fallen short of expectations, and significant advancements are needed to meet the demanding requirements of CSSs.

Initially, this thesis introduces a new type of CSS, denoted as 1:1 ACC-CSS, composing of flexible energy storage devices and a structural unit made of carbon fiber reinforced polymer (CFRP). The energy storage devices utilize KOH activated carbon cloth (ACC) as the electrode and Poly(vinyl alcohol) (PVA)-KOH gel electrolyte. 1:1 ACC-CSS exhibits promising mechanical properties with a flexural strength of 230 MPa, a flexural modulus of 21 GPa, and a shear strength of 8.75 MPa. Additionally, 1:1 ACC-CSS demonstrates good electrochemical properties, including a specific capacitance of 88 mF×g-1, energy density of 9.9 mWh×kg-1 and power density of 445.5 mW×kg-1. It also demonstrates the superior stability of 1:1 ACC-CSS's electrochemical performance under various external static and dynamic loads through in-situ mechano-electrochemical tests. Furthermore, even after mechanical failure, 1:1 ACC-CSS is still able to maintain its electrochemical performance, which ensures the safety and reliability of the structure.

To enhance the electrochemical capacity of CSS, the thesis proposes a battery-like asymmetric structure for CSS by replacing the ACC electrode with a carbon cloth (CC) electrode coated by Ni-Co-layer double hydroxide, resulting in a new CSS, called NiCo@CC-CSS. This new structure exhibits significantly improved electrochemical performance, with a specific capacity of 610 mF×g-1, an energy density of 191 mWh×kg-1 and a power density of 1508 mW×kg-1. However, the flexural strength of NiCo@CC-CSS remains similar to that of ACC-CSS, at 270 MPa, because the CFRP component that primarily provides mechanical strength remains unchanged. In-situ mechano-electrochemical tests demonstrate the stable electrochemical behavior of NiCo@CC-CSS under various external forces. Furthermore, the thesis systematically studies the electrochemical cycling performance of NiCo@CC-CSS and analyzes the mechanism of capacity degradation.

To improve the mechanical properties, a new composite laying mode is proposed. Activated carbon nanotubes (ACNTs) are introduced on the surface of carbon fibers to further improve the electrochemical performance. PVA-ionic liquid (IL) gel electrolyte is applied to replace PVA-KOH to expand the potential window. The resulting CSS, called ACNT-CSS, exhibits excellent mechanical (flexural strength: 505 MPa) and electrochemical properties (specific capacitance: 1,430 mF×g-1, energy density: 1,488 mWh×kg-1, power density: 7,650 mW×kg-1). In addition to in-situ mechano-electrochemical tests, the thesis also studies the effect of drop-weight impact on the electrochemical performance of ACNT-CSS. The results demonstrate that ACNT-CSS can still retain some electrochemical capacity in a non-perforated state after impact, providing assurance of the system's reliability. Furthermore, the stable electrochemical behavior of ACNT-CSS under high temperatures and high bending forces confirms its safety.

In addition to the evaluation of the electrochemical and mechanical properties of CSSs, this thesis also proposes a new sensor-free structural health monitoring method, which allows the assessment of the structural health of CSSs solely through electrochemical performance tests. It is found that the changes in ESR values under external dynamic loads is closely related to the ripples on the GCD curves of CSS, and the ESR values decrease linearly with increasing external forces.

The series of improvements in the mechanical and electrochemical properties of the CSSs are very significant and demonstrate the effectiveness of the research and optimization efforts. The increase in flexural strength from 230 MPa of 1:1 ACC-CSS to 505 MPa of ACNT-CSS indicates a significant improvement in the mechanical stability of the structure, making it more suitable for load-bearing applications. The increase in specific capacitance from 88 mF×g-1 to 1,430 mF×g-1 and energy density from 9.9 mWh×kg-1 to 1,488 mWh×kg-1 demonstrate that the electrochemical properties of the CSS have also been significantly enhanced, making it a more effective energy storage material. Overall, this thesis successfully demonstrates the design and fabrication of load bearing/energy storage CSSs and presents a comprehensive systematic study compared to other reports, providing guidance for the future development and research of CSSs.

关键词
语种
英语
培养类别
联合培养
入学年份
2020
学位授予年份
2023-11
参考文献列表

[1] Y. Yu, B. Zhang, M. Feng, G. Qi, F. Tian, Q. Feng, J. Yang, S. Wang, Multifunctional structural lithium ion batteries based on carbon fiber reinforced plastic composites, Compos. Sci. Technol. 147 (2017) 62-70.
[2] E. Senokos, Y. Ou, J. J. Torres, F. Sket, C. Gonzalez, R. Marcilla, J. J. Vilatela, Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves, Sci. Rep. 8 (2018) 3407.
[3] K. Moyer, C. Meng, B. Marshall, O. Assal, J. Eaves, D. Perez, R. Karkkainen, L. Roberson, C. L. Pint, Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats, Energy Storage Mater. 24 (2020) 676-681.
[4] P. Ladpli, R. Nardari, F. Kopsaftopoulos, F.-K. Chang, Multifunctional energy storage composite structures with embedded lithium-ion batteries, J. Power Sources 414 (2019) 517-529.
[5] J. Sun, V. Gargitter, S. Pei, T. Wang, Y. Yan, S. G. Advani, L. Wang, T.-W. Chou, Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/ solid electrolyte supercapacitor interleaves, Compos. Sci. Technol. 196 (2020) 108234.
[6] M. W. S. Ekstedt , L. E. Asp, Structural batteries made from fibre reinforced composites, Plast. Rubber Compos. 39 (2010) 148-150.
[7] N. Shirshova, H. Qian, M. Houlle, J. H. Steinke, A. R. Kucernak, Q. P. Fontana, E. S. Greenhalgh, A. Bismarck, M. S. Shaffer, Multifunctional structural energy storage composite supercapacitors, Faraday Discuss. 172 (2014) 81-103.
[8] T. Carlson, Multifunctional Composite Materials - Design, manufacture and experimental characterisation, Doctoral thesis, Lulea University of Technology (2013)
[9] E. Kandare, A. A. Khatibi, S. Yoo, R. Wang, J. Ma, P. Olivier, N. Gleizes, C. H. Wang, Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nanoinclusions, Compos. Part A-Appl. S. 69 (2015) 72-82.
[10] C. Deng, J. Jiang, F. Liu, L. Fang, J. Wang, D. Li, J. Wu, Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite, Appl. Surf. Sci. 357 (2015) 1274-1280.
[11] N. I. Lynn M. Schneider, Dan Zenkert, Mats Johansson, Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries, ACS Appl. Energ. Mater. 2 (2019) 4362-4369.
[12] W. J. N. Ihrner, F. Sieland, D. Zenkert, M. Johansson, Structural lithium ion battery electrolytes via reaction induced phase-separation, J. Mater. Chem. A 5 (2017) 25652-25659.
[13] R. Reece, C. Lekakou, P. A. Smith, A high-performance structural supercapacitor, ACS Appl. Mater. Inter. 12 (2020) 25683-25692.
[14] B. K. Deka, A. Hazarika, J. Kim, Y.-B. Park, H. W. Park, Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid–polyester resin, Compos. Part A-Appl. S. 87 (2016) 256-262.
[15] Y. Xu, W. Lu, G. Xu, T.-W. Chou, Structural supercapacitor composites: A review, Compos. Sci. Technol. 204 (2021) 108636.
[16] L. E. Asp, E. S. Greenhalgh, Structural power composites, Compos. Sci. Technol. 101 (2014) 41-61.
[17] W. Johannisson, N. Ihrner, D. Zenkert, M. Johansson, D. Carlstedt, L. E. Asp, F. Sieland, Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries, Compos. Sci. Technol. 168 (2018) 81-87.
[18] C. Meng, N. Muralidharan, E. Teblum, K. E. Moyer, G. D. Nessim, C. L. Pint, Multifunctional structural ultrabattery composite, Nano Lett. 18 (2018) 7761-7768.
[19] J. Xu, W. Johannisson, M. Johansen, F. Liu, D. Zenkert, G. Lindbergh, L. E. Asp, Characterization of the adhesive properties between structural battery electrolytes and carbon fibers, Compos. Sci. Technol. 188 (2020) 107962.
[20] S. J. Kwon, T. Kim, B. M. Jung, S. B. Lee, U. H. Choi, Multifunctional epoxybased solid polymer electrolytes for solid-state supercapacitors, ACS Appl. Mater. Inter. 10 (2018) 35108-35117.
[21] Y. Yu, B. Zhang, Y. Wang, G. Qi, F. Tian, J. Yang, S. Wang, Co-continuous structural electrolytes based on ionic liquid, epoxy resin and organoclay: Effects of organoclay content, Mater. Design 104 (2016) 126-133.
[22] J. Sun, V. Gargitter, S. Pei, T. Wang, Y. Yan, S. G. Advani, L. Wang, T.-W. Chou, Mechanical and electrochemical performance of hybrid laminated structural composites with carbon fiber/ solid electrolyte supercapacitor interleaves, Compos. Sci. Technol. 196 (2020) 108234.
[23] B. K. Muñoz, A. del Bosque, M. Sánchez, V. Utrilla, S. G. Prolongo, M. G. Prolongo, A. Ureña, Epoxy resin systems modified with ionic liquids and ceramic nanoparticles as structural composites for multifunctional applications, Polymer 214 (2021) 123233.
[24] Y. Fu, H. Zhou, L. Zhou, Phase-microstructure-mechanical properties relationship of carbon fiber reinforced ionic liquid epoxy composites, Compos. Sci. Technol. 207 (2021) 108711.
[25] N. S. Hudak, A. D. Schlichting, K. Eisenbeiser, Structural supercapacitors with enhanced performance using carbon nanotubes and polyaniline, J. Electrochem. Soc. 164 (2017) 691-700.
[26] M. S. Islam, Y. Deng, L. Tong, S. N. Faisal, A. K. Roy, A. I. Minett, V. G. Gomes, Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications, Carbon 96 (2016) 701-710.
[27] M. Sawangphruk, P. Srimuk, P. Chiochan, A. Krittayavathananon, S. Luanwuthi, J. Limtrakul, High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper, Carbon 60 (2013) 109116.
[28] H. Zhang, A. Li, J. Wang, Y. Zhang, Z. Zhao, H. Zhao, M. Cheng, C. Wang, J. Wang, S. Zhang, J. Wang, Graphene integrating carbon fiber and hierarchical porous carbon formed robust flexible “carbon-concrete” supercapacitor film, Carbon 126 (2018) 500-506.
[29] H. Qian, A. R. Kucernak, E. S. Greenhalgh, A. Bismarck, M. S. Shaffer, Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric, ACS Appl. Mater. Inter. 5 (2013) 6113-6122.
[30] Y. Liu, N. Fu, G. Zhang, M. Xu, W. Lu, L. Zhou, H. Huang, Design of hierarchical Ni-Co@Ni-Co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors, Adv. Funct. Mater. 27 (2017) 1605307.
[31] S. T. Senthilkumar, N. Fu, Y. Liu, Y. Wang, L. Zhou, H. Huang, Flexible fiber hybrid supercapacitor with NiCo2O4 nanograss@carbon fiber and bio-waste derived high surface area porous carbon, Electrochim. Acta 211 (2016) 411-419.
[32] L. M. Schneider, N. Ihrner, D. Zenkert, M. Johansson, Bicontinuous electrolytes via thermally initiated polymerization for structural lithium ion batteries, ACS Appl. Energ. Mater. 2 (2019) 4362-4369.
[33] V. Tu, L. E. Asp, N. Shirshova, F. Larsson, K. Runesson, R. Jänicke, Performance of bicontinuous structural electrolytes, Multifunct. Mater. 3 (2020) 025001.
[34] J. Y. Lim, D. A. Kang, N. U. Kim, J. M. Lee, J. H. Kim, Bicontinuously crosslinked polymer electrolyte membranes with high ion conductivity and mechanical strength, J. Membrane Sci. 589 (2019) 117250.
[35] A. Ganguly, A. Karakassides, J. Benson, S. Hussain, P. Papakonstantinou, Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes, ACS Appl. Energ. Mater. 3 (2020) 4245-4254.
[36] Z. Sha, F. Huang, Y. Zhou, J. Zhang, S. Wu, J. Chen, S. A. Brown, S. Peng, Z. Han, C.-H. Wang, Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors, Compos. Sci. Technol. 201 (2021) 108568.
[37] Y. Zhang, J. Ma, A. K. Singh, L. Cao, J. Seo, C. D. Rahn, C. E. Bakis, M. A. Hickner, Multifunctional structural lithium-ion battery for electric vehicles, J. Interl. Mat. Syst. Str 28 (2017) 1603-1613.
[38] L. E. Asp, K. Bouton, D. Carlstedt, S. Duan, R. Harnden, W. Johannisson, M. Johansen, M. K. G. Johansson, G. Lindbergh, F. Liu, K. Peuvot, L. M. Schneider, J. Xu, D. Zenkert, A structural battery and its multifunctional performance, Adv. Energy Sustain. Res. 2 (2021) 2000093.
[39] B. K. Deka, A. Hazarika, J. Kim, N. Kim, H. E. Jeong, Y.-B. Park, H. W. Park, Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors, Chem. Eng. J. 355 (2019) 551-559.
[40] L. E. Asp, M. Johansson, G. Lindbergh, J. Xu, D. Zenkert, Structural battery composites: A review, Funct. Compos. Strcut. 1 (2019) 042001.
[41] T. Carlson, D. Ordéus, M. Wysocki, L. E. Asp, Structural capacitor materials made from carbon fibre epoxy composites, Compos. Sci. Technol. 70 (2010) 1135-1140.
[42] T. Carlson, L. E. Asp, Structural carbon fibre composite/PET capacitors – Effects of dielectric separator thickness, Compos. Part B-Eng. 49 (2013) 16-21.
[43] K. Pattarakunnan, J. Galos, R. Das, A. P. Mouritz, Tensile properties of multifunctional composites embedded with lithium-ion polymer batteries, Compos. Part A-Appl. S. 136 (2020) 105966.
[44] J. Galos, A. S. Best, A. P. Mouritz, Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads, Mater. Design 185 (2020) 108228.
[45] D. Carlstedt, E. Marklund, L. E. Asp, Effects of state of charge on elastic properties of 3D structural battery composites, Compos. Sci. Technol. 169 (2019) 26-33.
[46] D. Carlstedt, L. E. Asp, Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling, Compos. Sci. Technol. 179 (2019) 69-78.
[47] R. H. C. J. F. Snyder, E.L. Wong, P. A. Nguyen, K. Xu, E. H. Ngo, E. D. Wetzel, Multifunctional structural composite batteries, Army research laboratory, (2007)
[48] Y. Wang, C. Peng, W. Zhang, Thermal analysis of multifunctional structural battery for satellite applications, Appl. Therm. Eng. 78 (2015) 209-216.
[49] Y. Fu, H. Zhou, L. Zhou, Phase-microstructure-mechanical properties relationship of carbon fiber reinforced ionic liquid epoxy composites, Compos. Sci. Technol. 207 (2021) 108711.
[50] Z. Hu, Y. Fu, Z. Hong, Y. Huang, W. Guo, R. Yang, J. Xu, L. Zhou, S. Yin, Composite structural batteries with Co3O4/CNT modified carbon fibers as anode: Computational insights on the interfacial behavior, Compos. Sci. Technol. 201 (2021) 108495.
[51] V. Tu, L. E. Asp, N. Shirshova, F. Larsson, K. Runesson, R. Jänicke, Performance of bicontinuous structural electrolytes, Multifunct. Mater. 3 (2020) 025001.
[52] J. F. Snyder, E. L. Wong, C. W. Hubbard, Evaluation of commercially available carbon fibers, fabrics, and papers for potential use in multifunctional energy storage applications, J. Electrochem. Soc. 156 (2009) 81-103.
[53] M. H. Kjell, E. Jacques, D. Zenkert, M. r. Behm, G. r. Lindbergh, PAN-based carbon fiber negative electrodes for structural lithium-ion batteries, J. Electrochem. Soc. 158 (2011) 1455-1460.
[54] E. Jacques, M. H. Kjell, D. Zenkert, G. Lindbergh, M. Behm, M. Willgert, Impact of electrochemical cycling on the tensile properties of carbon fibres for structural lithium-ion composite batteries, Compos. Sci. Technol. 72 (2012) 792-798.
[55] E. Jacques, M. H. Kjell, D. Zenkert, G. Lindbergh, The effect of lithiumintercalation on the mechanical properties of carbon fibres, Carbon 68 (2014) 725-733.
[56] Y. Fu, H. Zhou, S. Yin, L. Zhou, Facile synthesis of substrate supported ultrathin two-dimensional cobalt-based metal organic frameworks nanoflakes, Compos. Part A Appl. S. 134 (2020) 105910.
[57] L. Gao, J. U. Surjadi, K. Cao, H. Zhang, P. Li, S. Xu, C. Jiang, J. Song, D. Sun, Y. Lu, Flexible fiber-shaped supercapacitor based on nickel-cobalt double hydroxide and pen ink electrodes on metallized carbon fiber, ACS Appl. Mater. Inter. 9 (2017) 5409-5418.
[58] D. Salinas-Torres, J. M. Sieben, D. Lozano-Castelló, D. Cazorla-Amorós, E. Morallón, Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes, Electrochim. Acta 89 (2013) 326-333.
[59] K. Aso, A. Sakuda, A. Hayashi, M. Tatsumisago, All-solid-state lithium secondary batteries using NiS-carbon fiber composite electrodes coated with Li2S-P2S5 solid electrolytes by pulsed laser deposition, ACS Appl. Mater. Inter. 5 (2013) 686-690.
[60] H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei, J. Feng, Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor, J. Power Sources 378 (2018) 248-254.
[61] H. Li, S. Wang, M. Feng, J. Yang, B. Zhang, MOF-derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries, Chinese Chem. Lett. 30 (2019) 529-532.
[62] Y. Fu, H. Zhou, Z. Hu, S. Yin, L. Zhou, Temperature-induced microstructure optimization of Co3O4 for the achievement of a high-areal-capacity carbon cloth-based lithium ion battery anode, Compos. Commun. 22 (2020) 100446.
[63] C. Cheng, G. Zhou, J. Du, H. Zhang, D. Guo, Q. Li, W. Wei, L. Chen, Hierarchical porous Co3O4 nanosheet arrays directly grown on carbon cloth by an electrochemical route for high performance Li-ion batteries, New J. Chem. 38 (2014) 2250-2253.
[64] Q. Han, X. Li, F. Wang, Z. Han, D. Geng, W. Zhang, Y. Li, Y. Deng, J. Zhang, S. Niu, L. Wang, Carbon fiber@ pore-ZnO composite as anode materials for structural lithium-ion batteries, J. Electroanal. Chem. 833 (2019) 39-46.
[65] J. Hagberg, H. A. Maples, K. S. P. Alvim, J. Xu, W. Johannisson, A. Bismarck, D. Zenkert, G. Lindbergh, Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries, Compos. Sci. Technol. 162 (2018) 235-243.
[66] Y. Huang, H. Liu, Y.-C. Lu, Y. Hou, Q. Li, Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application, J. Power Sources 284 (2015) 236-244.
[67] L. E. Asp, K. Bouton, D. Carlstedt, S. Duan, R. Harnden, W. Johannisson, M. Johansen, M. K. G. Johansson, G. Lindbergh, F. Liu, K. Peuvot, L. M. Schneider, J. Xu, D. Zenkert, A structural battery and its multifunctional performance, Adv. Energy Sustain. Res. 2 (2021) 2000093.
[68] J. Chen, Y. Zhou, M. S. Islam, X. Cheng, S. A. Brown, Z. Han, A. N. Rider, C. H. Wang, Carbon fiber reinforced Zn–MnO2 structural composite batteries, Compos. Sci. Technol. 209 (2021) 108787.
[69] N. Shirshova, A. Bismarck, S. Carreyette, Q. P. V. Fontana, E. S. Greenhalgh, P. Jacobsson, P. Johansson, M. J. Marczewski, G. Kalinka, A. R. J. Kucernak, J. Scheers, M. S. P. Shaffer, J. H. G. Steinke, M. Wienrich, Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems, J. Mater. Chem. A 1 (2013) 15300-15309.
[70] B. Demir, K.-y. Chan, D. J. Searles, Structural electrolytes based on epoxy resins and ionic liquids: A molecular-level investigation, Macromolecules 53 (2020) 7635-7649.
[71] A. Javaid, M. B. Zafrullah, F. u. H. Khan, G. M. Bhatti, Improving the multifunctionality of structural supercapacitors by interleaving graphene nanoplatelets between carbon fibers and solid polymer electrolyte, J. Compos. Mater 53 (2018) 1401-1409.
[72] W. T. Andrews, A. Liebig, J. Cook, P. Marsh, C. Ciocanel, G. E. Lindberg, C. C. Browder, Development of a PEO-based lithium ion conductive epoxy resin polymer electrolyte, Solid State Ionics 326 (2018) 150-158.
[73] M. Li, H. Li, J.-L. Lan, Y. Yu, Z. Du, X. Yang, Integrative preparation of mesoporous epoxy resin–ceramic composite electrolytes with multilayer structure for dendrite-free lithium metal batteries, J. Mater. Chem. A 6 (2018) 19094-19106.
[74] N. Shirshova, P. Johansson, M. J. Marczewski, E. Kot, D. Ensling, A. Bismarck, J. H. G. Steinke, Polymerised high internal phase ionic liquid-in-oil emulsions as potential separators for lithium ion batteries, J. Mater. Chem. A 1 (2013) 9612-9619.
[75] N. Shirshova, H. Qian, M. S. P. Shaffer, J. H. G. Steinke, E. S. Greenhalgh, P. T. Curtis, A. Kucernak, A. Bismarck, Structural composite supercapacitors, Compos. Part A-Appl. S. 46 (2013) 96-107.
[76] L. E. Asp, Multifunctional composite materials for energy storage in structural load paths, Plast. Rubber Compos. 42 (2013) 144-149.
[77] E. B. Gienger, P.-A. T. Nguyen, W. Chin, K. D. Behler, J. F. Snyder, E. D. Wetzel, Microstructure and multifunctional properties of liquid + polymer bicomponent structural electrolytes: Epoxy gels and porous monoliths, J. Appl. Polym. Sci. 132 (2015) 42681.
[78] N. Shirshova, A. Bismarck, E. S. Greenhalgh, P. Johansson, G. Kalinka, M. J. Marczewski, M. S. P. Shaffer, M. Wienrich, Composition as a means to control morphology and properties of epoxy based dual-phase structural electrolytes, J. Phys. Chem. C 118 (2014) 28377-28387.
[79] Poonam, K. Sharma, A. Arora, S. K. Tripathi, Review of supercapacitors: Materials and devices, J. Energy Storage 21 (2019) 801-825.
[80] S. Zhang, and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater. 5 (2015) 1401401.
[81] Y. O. M. Rana, C. Meng, F. Sket, C. González, J. J. Vilatela, Damage-tolerant, laminated structural supercapacitor composites enabled by integration of carbon nanotube fibres, Multifunct. Mater. 3 (2020) 015001.
[82] A. Ganguly, A. Karakassides, J. Benson, S. Hussain, P. Papakonstantinou, Multifunctional structural supercapacitor based on urea-activated graphene nanoflakes directly grown on carbon fiber electrodes, ACS Appl. Energy Mater. 3 (2020) 4245-4254.
[83] T. H. Wu, C. T. Chang, C. C. Wang, S. Parwaiz, C. C. Lai, Y. Z. Chen, S. Y. Lu, Y. L. Chueh, Few-layer graphene sheet-passivated porous silicon toward excellent electrochemical double-layer supercapacitor electrode, Nanoscale Res. Lett. 13 (2018) 242.
[84] X. Song, X. Ma, Y. Li, L. Ding, R. Jiang, Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors, Appl. Surf. Sci. 487 (2019) 189-197.
[85] H.-J. Jung, K.-H. Park, C. Kim, T.-Y. Kim, J.-W. Lee, Highly porous carbon sorbents prepared from bean dregs for electric double-layer supercapacitor, T. Electr. Electron. Mater. 19 (2018) 173-178.
[86] P.-Z. Cheng, H. Teng, Electrochemical responses from surface oxides present on HNO3-treated carbons, Carbon 41 (2003) 2057-2063.
[87] M. Wu, Q. Zha, J. Qiu, Y. Guo, H. Shang, A. Yuan, Preparation and characterization of porous carbons from PAN-based preoxidized cloth by KOH activation, Carbon 42 (2004) 205-210.
[88] J. Wang, and S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22 (2012) 23710-23725.
[89] H. Qian, H. Diao, N. Shirshova, E. S. Greenhalgh, J. G. Steinke, M. S. Shaffer, A. Bismarck, Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors, J. Colloid Interf. Sci. 395 (2013) 241-248.
[90] Y. Liu, N. Fu, G. Zhang, M. Xu, W. Lu, L. Zhou, H. Huang, Design of hierarchical ni-co@ni-co layered double hydroxide core-shell structured nanotube array for high-performance flexible all-solid-state battery-type supercapacitors, Adv. Funct. Mater. 27 (2017) 1605307.
[91] S. T. Senthilkumar, J. Kim, Y. Wang, H. Huang, Y. Kim, Flexible and wearable fiber shaped high voltage supercapacitors based on copper hexacyanoferrate and porous carbon coated carbon fiber electrodes, J. Mater. Chem. A 4 (2016) 4934-4940.
[92] Y. Li, C. Chen, Polyaniline/carbon nanotubes-decorated activated carbon fiber felt as high-performance, free-standing and flexible supercapacitor electrodes, J. Mater. Sci. 52 (2017) 12348-12357.
[93] Z. Jiao, Q. Wu, L. Cardon, J. Qiu, Preparation and electrochemical performance of hollow activated carbon fiber self-supported electrode for supercapacitor, J. Nanosci. Nanotechnol. 20 (2020) 2316-2323.
[94] M.-Y. Chung, C.-T. Lo, High-performance binder-free RuO2/electrospun carbon fiber for supercapacitor electrodes, Electrochim. Acta 364 (2020) 137324.
[95] J. Cherusseri, K. Sambath Kumar, D. Pandey, E. Barrios, J. Thomas, Vertically aligned graphene-carbon fiber hybrid electrodes with superlong cycling stability for flexible supercapacitors, Small 15 (2019) 1902606.
[96] D. A. L. Almeida, A. B. Couto, N. G. Ferreira, Flexible polyaniline/reduced graphene oxide/carbon fiber composites applied as electrodes for supercapacitors, J. Alloy Compd. 788 (2019) 453-460.
[97] E. S. Greenhalgh, J. Ankersen, L. E. Asp, A. Bismarck, Q. P. V. Fontana, M. Houlle, G. Kalinka, A. Kucernak, M. Mistry, S. Nguyen, H. Qian, M. S. P. Shaffer, N. Shirshova, J. H. G. Steinke, M. Wienrich, Mechanical, electrical and microstructural characterisation of multifunctional structural power composites, J. Compos. Mater. 49 (2014) 1823-1834.
[98] W. Fan, Y. Wang, C. Wang, J. Chen, Q. Wang, Y. Yuan, F. Niu, High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength, Appl. Surf. Sci. 364 (2016) 539-551.
[99] N. De Greef, L. Zhang, A. Magrez, L. Forró, J.-P. Locquet, I. Verpoest, J. W. Seo, Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers, Dima. Relat. Mater. 51 (2015) 39-48.
[100] H. Luo, H. Lu, J. Qiu, Carbon fibers surface-grown with helical carbon nanotubes and polyaniline for high-performance electrode materials and flexible supercapacitors, J. Electroanal. Chem. 828 (2018) 24-32.
[101] K. Subhani, X. Jin, P. J. Mahon, A. Kin Tak Lau, N. V. Salim, Graphene aerogel modified carbon fiber reinforced composite structural supercapacitors, Compos. Commun. 24 (2021) 100663.
[102] B. K. Deka, A. Hazarika, O. Kwon, D. Kim, Y.-B. Park, H. W. Park, Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes, Chem. Eng. J. 325 (2017) 672-680.
[103] J. Zhang, H. Gao, Q. Yang, X. T. Zhang, M. Y. Zhang, L. L. Xu, Effect of temperature on pseudocapacitance performance of carbon fiber@NiCo2O4@Ni(OH)2 core–shell nanowire array composite electrodes, Appl. Surf. Sci., 356 (2015) 167-172.
[104] C. Song, J. Yun, K. Keum, Y. R. Jeong, H. Park, H. Lee, G. Lee, S. Y. Oh, J. S. Ha, High performance wire-type supercapacitor with Ppy/CNT-ionic liquid/AuNP/carbon fiber electrode and ionic liquid based electrolyte, Carbon 144 (2019) 639-648.
[105] G. M. Tomboc, H. Kim, Derivation of both EDLC and pseudocapacitance characteristics based on synergistic mixture of NiCo2O4 and hollow carbon nanofiber: An efficient electrode towards high energy density supercapacitor, Electrochim. Acta 318 (2019) 392-404.
[106] A. Javaid, O. Khalid, A. Shakeel, S. Noreen, Multifunctional structural supercapacitors based on polyaniline deposited carbon fiber reinforced epoxy composites, J. Energy Storage 33 (2021) 102168.
[107] A. Javaid, K. K. C. Ho, A. Bismarck, J. H. G. Steinke, M. S. P. Shaffer, E. S. Greenhalgh, Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement, J. Compos. Mater. 52 (2018) 3085-3097.
[108] Z. Sha, F. Huang, Y. Zhou, J. Zhang, S. Wu, J. Chen, S. A. Brown, S. Peng, Z. Han, C.-H. Wang, Synergies of vertical graphene and manganese dioxide in enhancing the energy density of carbon fibre-based structural supercapacitors, Compos. Sci. Technol. 201 (2021) 108568.
[109] A. Javaid, K. K. C. Ho, A. Bismarck, J. H. G. Steinke, M. S. P. Shaffer, E. S. Greenhalgh, Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications, J Compos. Mater. 50 (2015) 2155-2163.
[110] B. Szubzda, A. Szmaja, M. Ozimek, S. Mazurkiewicz, Polymer membranes as separators for supercapacitors, Appl. Phys. A 117 (2014) 1801-1809.
[111] L. Li, H. Zhang, A. Cheng, W. Zhong, Z. Li, Z. Li, Ultrasmall metal oxide nanocrystals embedded in nitrogen-doped carbon networks based on one-step pyrolysis of bi-functional metallo-organic molecules for high-performance lithiumion batteries, Electrochim. Acta 331 (2020) 135430.
[112] L. Li, H. Zhang, Z. Li, W. Zhong, H. Liao, Z. Li, Rapid preparation of SnO2/C nanospheres by using organotin as building blocks and their application in lithium-ion batteries, RSC Adv. 7 (2017) 34442-34447.
[113] H. Zhang, L. Li, Z. Li, W. Zhong, H. Liao, Z. Li, Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries, Appl. Surf. Sci. 442 (2018) 65-70.
[114] L. Li, H. Zhang, A. Cheng, W. Zhong, Z. Li, Recent discovery of a multifunctional metallo-organic precursor for fabricating Co3O4/N-doped porous carbon by one-step in situ pyrolysis as an anode material for Li-ion batteries, J. Mater. Sci. 56 (2020) 1590-1599.
[115] T. Liu, Z. Lin, D. Wang, M. Zhang, Q. Hu, L. Tan, Y. Wu, X. Zhang, H. Huang, J. Wang, Aluminum electrolysis derivative spent cathodic carbon for dendrite-free Li metal anode, Mater. Today Energy 17 (2020) 100465.
[116] T. Liu, Q. Hu, X. Li, L. Tan, G. Yan, Z. Wang, H. Guo, Y. Liu, Y. Wu, J. Wang, Lithiophilic Ag/Li composite anodes via a spontaneous reaction for Li nucleation with a reduced barrier, J. Mater. Chem. A 7 (2019) 20911-20918.
[117] C. Cheng, J. Xu, W. Gao, S. Jiang, R. Guo, Preparation of flexible supercapacitor with RGO/Ni-MOF film on Ni-coated polyester fabric, Electrochim. Acta 318 (2019) 23-31.
[118] Guangdong Fenghua hi-tech Co., Ltd., FHNPA2R7L505M Product Specification, http://www.sznse.com/uploadfiles/FHNPA2R7L505M Product Specification.pdf (accessed 30 July 2021).
[119] G.Zhang, W.Li, K.Xie, F.Yu and H.Huang, A One-Step and Binder-Free Method to Fabricate Hierarchical Nickel-Based Supercapacitor Electrodes with Excellent Performance, Adv. Funct. Mater. 23, 3675 (2013).
[120] K. Li, H. Li, M. Li, C. Li, L. Su, L. Qian, B. Yang, Carbon-nanotube@graphene core–shell nanostructures as active material in flexible symmetrical supercapacitors, Compos. Sci. Technol. 175 (2019) 92-99.
[121] Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao, Y. Chen, X. Chen, H. Song, Boosting the electrical double‐layer capacitance of graphene by self‐doped defects through ball‐milling, Adv. Funct. Mater. 29 (2019) 1901127.
[122] R. Reece, C. Lekakou, P. A. Smith, A structural supercapacitor based on activated carbon fabric and a solid electrolyte, Mater. Sci. Technol. 35 (2018) 368-375.
[123] E. Senokos, Y. Ou, J. J. Torres, F. Sket, C. Gonzalez, R. Marcilla, J. J. Vilatela, Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves, Sci. Rep. 8 (2018) 3407.
[124] A. Javaid, K. K. C. Ho, A. Bismarck, J. H. G. Steinke, M. S. P. Shaffer, E. S. Greenhalgh, Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement, J. Compos. Mater. 52 (2018) 3085-3097.
[125] J. Wang, Z. Liu, Y. Zhao, Alcohol hydroxides regulate the growth of Ni-Co layered double hydroxides on carbon fiber cloth as supercapacitor electrode materials, Electrochim. Acta 403 (2022) 139645.
[126] M. A. Sayeed, T. Herd, A. P. O'Mullane, Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction, J. Mater. Chem. A 4 (2016) 991-999.
[127] W. Yan, D. Wang, G. G. Botte, Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation, Electrochim. Acta 61 (2012) 25-30.
[128] C. Zhang, J. Zhao, L. Zhou, Z. Li, M. Shao, M. Wei, Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water, J. Mater. Chem. A 4 (2016) 11516-11523.
[129] X. Zheng, Z. Gu, Q. Hu, B. Geng, X. Zhang, Ultrathin porous nickel–cobalt hydroxide nanosheets for high-performance supercapacitor electrodes, RSC Adv. 5 (2015) 17007-17013.
[130] H. Zhou, Y. Su, J. Zhang, H. Li, L. Zhou, H. Huang, A novel embedded all-solidstate composite structural supercapacitor based on activated carbon fiber electrode and carbon fiber reinforced polymer matrix, Chem. Eng. J. 454 (2023) 140222.
[131] F. Yu, Y. Wu, X. Li, J. Ma, Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes, J. Agric. Food Chem. 60 (2012) 12245-12253.
[132] L. Donnaperna, L. Duclaux, R. Gadiou, Y. Soneda, N. Yoshizawa, KOH activated carbon multiwall nanotubes, Carbon Sci. Tech. 3 (2009) 120-124.
[133] Y. Liu, Z. Shen, K. Yokogawa, Investigation of preparation and structures of activated carbon nanotubes, Mater. Res. Bull. 41 (2006) 1503-1512.
[134] A. Koffi, D. Koffi, L. Toubal, Mechanical properties and drop-weight impact performance of injection-molded HDPE/birch fiber composites, Polym. Test. 93 (2021) 106956.
[135] E. V. González, P. Maimí, P. P. Camanho, A. Turon, J. A. Mayugo, Simulation of drop-weight impact and compression after impact tests on composite laminates, Compos. Struct. 94 (2012) 3364-3378.
[136] X. Zheng, B. Wan, P. Huang, J. Huang, Experimental study of hybrid strengthening technique using carbon fiber laminates and steel plates for reinforced concrete slabs, Constr. Build. Mater. 210 (2019) 324-337.
[137] T. Bjorn, Strengthening concrete beams for shear with CFRP sheets, Constr. Build. Mater. 17 (2003) 15-26.
[138] C. M. J. Miller Trent C., Mertz Dennis R., Hastings Jason N., Strengthening of a steel bridge girder using CFRP plates, J. Bridge Eng. 6 (2001) 514-522.
[139] P. Colombi, C. Poggi, Strengthening of tensile steel members and bolted joints using adhesively bonded CFRP plates, Constr. Build. Mater. 20 (2006) 22-33.
[140] M. Motavalli, C. Czaderski, K. Pfyl-Lang, Prestressed CFRP for strengthening of reinforced concrete structures: Recent developments at Empa, Switzerland, J. Compos. Constr. 15 (2011) 194-205.
[141] H. Wang, Y. Diao, Y. Lu, H. Yang, Q. Zhou, K. Chrulski, J. M. D'Arcy, Energy storing bricks for stationary PEDOT supercapacitors, Nat. Commun. 11 (2020) 3882.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553077
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
Zhou HM. STUDY OF COMPOSITE STRUCTURAL SUPERCAPACITORS BASED ON MODIFIED CARBON FIBER ELECTRODES[D]. 香港. 香港理工大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12068032-周翰墨-系统设计与智能(30456KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[周翰墨]的文章
百度学术
百度学术中相似的文章
[周翰墨]的文章
必应学术
必应学术中相似的文章
[周翰墨]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。