题名 | Photophysical Processes in Ternary Metal Halides and Sulfides for Optoelectronic Applications |
姓名 | |
姓名拼音 | GENG Pai
|
学号 | 11951007
|
学位类型 | 博士
|
学位专业 | 机械与能源工程
|
导师 | |
导师单位 | 机械与能源工程系
|
外机构导师 | Jonathan Eugene Halpert
|
外机构导师单位 | 香港科技大学
|
论文答辩日期 | 2023-08-18
|
论文提交日期 | 2023-08-31
|
学位授予单位 | 香港科技大学
|
学位授予地点 | 香港
|
摘要 | Over the past decade, perovskites have garnered widespread attention due to their excellent optoelectronic properties and simple synthesis routes. Considering the stability of the material and potential environmental pollution, a series of novel semiconductor materials have been developed as strong competitors. These ternary metal halides and sulfides exhibit excellent optical and electrical properties, such as tunable bandgaps, high color purity, high photoluminescence quantum yields, high stability, and low toxicity. All of the properties make these materials highly desirable for high-performance optoelectronic applications. In fact, all of these exceptional properties are supported by deep photophysical processes. By exploring and optimizing these processes, the potential of these materials can be further developed, and their device performance can be improved. With the development of transient spectroscopy, more details in these photophysical processes have become traceable. Based on the investigation of the photophysical processes, this thesis studies the unique properties of different ternary metal halides and sulfides and explores their potential for a range of optoelectronic applications.
In the first project, we discuss the feasibility of the photovoltaic devices based on the singlet fission effect and fabricate AgBiS2/Pentacene singlet fission solar cells. The process of triplet generation in pentacene and carrier transfer in heterojunction are meticulously traced by transient absorption spectroscopy. Subsequently, an additional annealing treatment is adopted, leading to enhanced singlet fission and more efficient carrier transfer, and eventually the singlet fission solar cells exhibit near-unity internal quantum efficiency. In the second project, a new low temperature injection method is developed for the synthesis of Cs3Cu2Br5 nanorods. The separation of the nucleation and the growth stages results in highly controllable aspect ratio of the products. The polarized emission of the Cs3Cu2Br5 nanorods is investigated by a single particle spectroscopy, and the highest recorded degree of polarization of the single nanorod is 0.88, showing great potential of this materials for fabricating polarized emission devices after appropriate alignment treatment. The third project focuses on the strongly confined CsPbBr3 quantum dots. By simply changing the precursor temperature, the quantum dots exhibit tunable emission ranging from violet-blue (433 nm) to pure-green (515 nm). The fabrication of deep-blue light emitting diodes is further tried with these strongly confined quantum dots. In the last project, we explore the energy funneling process in quasi-2D perovskite and summarize the various effects of the metal dopants in the devices.
Overall, this research includes the synthesis of numerous ternary metal halides and sulfides, the characterization of ultrafast photophysical processes in different systems, and the fabrication of some optoelectronic devices. By integrating the intrinsic mechanisms with the extrinsic properties, we aim to explore superior and novel materials, as well as higher-performance optoelectronic devices. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2019
|
学位授予年份 | 2023-10
|
参考文献列表 | [1. Kilner, J. A., In Concise Encyclopedia of Advanced Ceramic Materials, Oxford: 1991, pp. 349-351.2. Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A. and Guloy, A. M., Conducting Tin Halides with a Layered Organic-Based Perovskite Structure, Nature, 1994, 369, 467-469.3. Kojima, A.; Teshima, K.; Shirai, Y. and Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 2009, 131, 6050-6051.4. Green, M. A.; Ho-Baillie, A. and Snaith, H. J., The Emergence of Perovskite Solar Cells, Nat. Photonics, 2014, 8, 506-514.5. Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D., et al., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite, Nat. Nanotechnol., 2014, 9, 687-692.6. Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S. and Zhu, X. Y., Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors, Nat. Mater., 2015, 14, 636-642.7. Ramasamy, P.; Lim, D.-H.; Kim, B.; Lee, S.-H.; Lee, M.-S. and Lee, J.-S., All-Inorganic Cesium Lead Halide Perovskite Nanocrystals for Photodetector Applications, Chem. Commun., 2016, 52, 2067-2070.8. Leijtens, T.; Eperon, G. E.; Noel, N. K.; Habisreutinger, S. N.; Petrozza, A. and Snaith, H. J., Stability of Metal Halide Perovskite Solar Cells, Adv. Energy Mater., 2015, 5, 1500963.9. Lu, P.; Lu, M.; Wang, H.; Sui, N.; Shi, Z.; Yu, W. W. and Zhang, Y., Metal Halide Perovskite Nanocrystals and Their Applications in Optoelectronic Devices, InfoMat, 2019, 1, 430-459.10. Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y. and Guo, Z., Formability of ABX3 (X = F, Cl, Br, I) Halide Perovskites, Acta Crystallogr. Sect. B: Struct. Sci., 2008, 64, 702-707.11. Zhu, P. and Zhu, J., Low-Dimensional Metal Halide Perovskites and Related Optoelectronic Applications, InfoMat, 2020, 2, 341-378.12. Ali, L.; Subhan, F.; Ayaz, M.; Hassan, S. S.; Byeon, C. C.; Kim, J. S. and Bungau, S., Exfoliation of MoS2 Quantum Dots: Recent Progress and Challenges, Nanomaterials, 2022, 12.13. Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M. and Manna, L., Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions, J. Am. Chem. Soc., 2015, 137, 10276-10281.14. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J. and Kovalenko, M. V., Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I), Nano Lett., 2015, 15, 5635-5640.15. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A. and Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, Nano Lett., 2015, 15, 3692-3696.16. Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Chen, S. and Huang, W., Lead-Free Perovskite Materials for Solar Cells, Nano-Micro Lett., 2021, 13, 62.17. Chen, Z.; Wang, J. J.; Ren, Y.; Yu, C. and Shum, K., Schottky Solar Cells Based on CsSnI3 Thin-Films, Appl. Phys. Lett., 2012, 101, 093901.18. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H. and Kanatzidis, M. G., Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells, Nat. Photonics, 2014, 8, 489-494.19. Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L., et al., Ultra-High Open-Circuit Voltage of Tin Perovskite Solar Cells via an Electron Transporting Layer Design, Nat. Commun., 2020, 11, 1245.20. Xu, P.; Chen, S.; Xiang, H.-J.; Gong, X.-G. and Wei, S.-H., Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnI3, Chem. Mater., 2014, 26, 6068-6072.21. Kopacic, I.; Friesenbichler, B.; Hoefler, S. F.; Kunert, B.; Plank, H.; Rath, T. and Trimmel, G., Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering, ACS Appl. Energy Mater., 2018, 1, 343-347.22. Yang, D.; Zhang, G.; Lai, R.; Cheng, Y.; Lian, Y.; Rao, M.; Huo, D.; Lan, D.; Zhao, B. and Di, D., Germanium-Lead Perovskite Light-Emitting Diodes, Nat. Commun., 2021, 12, 4295.23. Li, Y. Y.; Vashishtha, P.; Zhou, Z. C.; Li, Z.; Shivarudraiah, S. B.; Ma, C.; Liu, J. K.; Wong, K. S.; Su, H. B. and Halpert, J. E., Room Temperature Synthesis of Stable, Printable Cs3Cu2X5 (X = I, Br/I, Br, Br/Cl, Cl) Colloidal Nanocrystals with Near-Unity Quantum Yield Green Emitters (X = Cl), Chem. Mater., 2020, 32, 5515-5524.24. Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J. and Hosono, H., Lead-Free Highly Efficient Blue-Emitting Cs3Cu2I5 with 0D Electronic Structure, Adv. Mater., 2018, 30, 1804547.25. Li, S.; Luo, J.; Liu, J. and Tang, J., Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications, J. Phys. Chem. Lett., 2019, 10, 1999-2007.26. Li, Y.; Zhou, Z.; Sheong, F. K.; Xing, Z.; Lortz, R.; Wong, K. S.; Sung, H. H. Y.; Williams, I. D. and Halpert, J. E., Tuning the Self-Trapped Emission: Reversible Transformation to 0D Copper Clusters Permits Bright Red Emission in Potassium and Rubidium Copper Bromides, ACS Energy Lett., 2021, 6, 4383-4389.27. Akgul, M. Z.; Figueroba, A.; Pradhan, S.; Bi, Y. and Konstantatos, G., Low-Cost RoHS Compliant Solution Processed Photovoltaics Enabled by Ambient Condition Synthesis of AgBiS2 Nanocrystals, ACS Photonics, 2020, 7, 588-595.28. Kisielowski, C.; Freitag, B.; Bischoff, M.; van Lin, H.; Lazar, S.; Knippels, G.; Tiemeijer, P.; van der Stam, M.; von Harrach, S.; Stekelenburg, M., et al., Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit, Microsc. Microanal., 2008, 14, 469-477.29. Norrish, R. G. W. and Porter, G., Chemical Reactions Produced by Very High Light Intensities, Nature, 1949, 164, 658-658.30. Sundaram, S. K. and Mazur, E., Inducing and Probing Non-Thermal Transitions in Semiconductors Using Femtosecond Laser Pulses, Nat. Mater., 2002, 1, 217-224.31. Maiuri, M.; Garavelli, M. and Cerullo, G., Ultrafast Spectroscopy: State of the Art and Open Challenges, J. Am. Chem. Soc., 2020, 142, 3-15.32. Elsaesser, T., Introduction: Ultrafast Processes in Chemistry, Chem. Rev., 2017, 117, 10621-10622.33. LaMer, V. K. and Dinegar, R. H., Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc., 1950, 72, 4847-4854.34. Whitehead, C. B.; Özkar, S. and Finke, R. G., LaMer's 1950 Model of Particle Formation: A Review and Critical Analysis of Its Classical Nucleation and Fluctuation Theory basis, of Competing Models and Mechanisms for Phase-Changes and Particle Formation, and then of Its Application to Silver Halide, Semiconductor, Metal, and Metal-Oxide Nanoparticles, Mater. Adv., 2021, 2, 186-235.35. Zhang, X.; Bai, X.; Wu, H.; Zhang, X.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W.; Yu, W. W. and Rogach, A. L., Water-Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals, Angew. Chem. Int. Ed., 2018, 57, 3337-3342.36. Huang, H.; Susha, A. S.; Kershaw, S. V.; Hung, T. F. and Rogach, A. L., Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature, Adv. Sci., 2015, 2, 1500194.37. Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; García Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K., et al., Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets, Nano Lett., 2015, 15, 6521-6527.38. Zhou, Z.; Li, Y.; Xing, Z.; Sung, H. H. Y.; Williams, I. D.; Li, Z.; Wong, K. S. and Halpert, J. E., Rapid Synthesis of Bright, Shape-Controlled, Large Single Crystals of Cs3Cu2X5 for Phase Pure Single (X = Br, Cl) and Mixed Halides (X = Br/Cl) as the Blue and Green Components for Printable White Light-Emitting Devices, Adv. Mater. Interfaces, 2021, 8, 2101471.39. Dirin, D. N.; Cherniukh, I.; Yakunin, S.; Shynkarenko, Y. and Kovalenko, M. V., Solution-Grown CsPbBr3 Perovskite Single Crystals for Photon Detection, Chem. Mater., 2016, 28, 8470-8474.40. Zhang, F.; Zhao, Z.; Chen, B.; Zheng, H.; Huang, L.; Liu, Y.; Wang, Y. and Rogach, A. L., Strongly Emissive Lead-Free 0D Cs3Cu2I5 Perovskites Synthesized by a Room Temperature Solvent Evaporation Crystallization for Down-Conversion Light-Emitting Devices and Fluorescent Inks, Adv. Opt. Mater., 2020, 8, 1901723.41. Liu, Y.; Dong, Q.; Fang, Y.; Lin, Y.; Deng, Y. and Huang, J., Fast Growth of Thin MAPbI3 Crystal Wafers on Aqueous Solution Surface for Efficient Lateral-Structure Perovskite Solar Cells, Adv. Funct. Mater., 2019, 29, 1807707.42. Roccanova, R.; Yangui, A.; Seo, G.; Creason, T. D.; Wu, Y.; Kim, D. Y.; Du, M.-H. and Saparov, B., Bright Luminescence from Nontoxic CsCu2X3 (X = Cl, Br, I), ACS Mater. Lett., 2019, 1, 459-465.43. Geller, S. and Wernick, J. H., Ternary Semiconducting Compounds with Sodium Chloride-Like Structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2, Acta Crystallogr., 1959, 12, 46-54.44. Pejova, B.; Grozdanov, I.; Nesheva, D. and Petrova, A., Size-Dependent Properties of Sonochemically Synthesized Three-Dimensional Arrays of Close-Packed Semiconducting AgBiS2 Quantum Dots, Chem. Mater., 2008, 20, 2551-2565.45. Viñes, F.; Konstantatos, G. and Illas, F., Bandgap Engineering by Cationic Disorder: Case Study on AgBiS2, Phys. Chem. Chem. Phys., 2017, 19, 27940-27944.46. Mitra, S. and Berardan, D., Influence of the Temperature and Composition on the Crystal Structure of the AgBiSe2-AgBiS2 System, Cryst. Res. Technol., 2017, 52, 1700075.47. Guin, S. N. and Biswas, K., Cation Disorder and Bond Anharmonicity Optimize the Thermoelectric Properties in Kinetically Stabilized Rocksalt AgBiS2 Nanocrystals, Chem. Mater., 2013, 25, 3225-3231.48. Guan, Y.; Huang, Y.; Wu, D.; Feng, D.; He, M. and He, J., Enhanced Thermoelectric Performance Realized in AgBiS2 Composited AgBiSe2 Through Indium Doping and Mechanical Alloying, Appl. Phys. Lett., 2018, 112, 213905.49. Chen, C.; Qiu, X.; Ji, S.; Jia, C. and Ye, C., The Synthesis of Monodispersed AgBiS2 Quantum Dots with a Giant Dielectric Constant, Cryst. Eng. Comm., 2013, 15, 7644-7648.50. Liang, N.; Chen, W.; Dai, F.; Wu, X.; Zhang, W.; Li, Z.; Shen, J.; Huang, S.; He, Q.; Zai, J., et al., Homogenously Hexagonal Prismatic AgBiS2 Nanocrystals: Controlled Synthesis and Application in Quantum Dot-Sensitized Solar Cells, Cryst. Eng. Comm., 2015, 17, 1902-1905.51. Bernechea, M.; Cates, N.; Xercavins, G.; So, D.; Stavrinadis, A. and Konstantatos, G., Solution-Processed Solar Cells Based on Environmentally Friendly AgBiS2 Nanocrystals, Nat. Photonics, 2016, 10, 521-525.52. Sugarthi, S.; Bakiyaraj, G.; Abinaya, R.; Navaneethan, M.; Archana, J. and Shimomura, M., Effect of Different Growth Temperature on the Formation of Ternary Metal Chalcogenides AgBiS2, Mater. Sci. Semicond. Process., 2020, 107, 104781.53. Hu, L.; Patterson, R. J.; Zhang, Z.; Hu, Y.; Li, D.; Chen, Z.; Yuan, L.; Teh, Z. L.; Gao, Y.; Conibeer, G. J., et al., Enhanced Optoelectronic Performance in AgBiS2 Nanocrystals Obtained via an Improved Amine-Based Synthesis Route, J. Mater. Chem. C, 2018, 6, 731-737.54. Chen, D.; Shivarudraiah, S. B.; Geng, P.; Ng, M.; Li, C. H. A.; Tewari, N.; Zou, X.; Wong, K. S.; Guo, L. and Halpert, J. E., Solution-Processed, Inverted AgBiS2 Nanocrystal Solar Cells, ACS Appl. Mater. Interfaces, 2022, 14, 1634-1642.55. Singh, S.; Jones, W. J.; Siebrand, W.; Stoicheff, B. P. and Schneider, W. G., Laser Generation of Excitons and Fluorescence in Anthracene Crystals, J. Chem. Phys., 1965, 42, 330-342.56. Trinh, M. T.; Pinkard, A.; Pun, A. B.; Sanders, S. N.; Kumarasamy, E.; Sfeir, M. Y.; Campos, L. M.; Roy, X. and Zhu, X. Y., Distinct Properties of the Triplet Pair State from Singlet Fission, Sci. Adv., 2017, 3, e1700241.57. Shockley, W. and Queisser, H. J., Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys., 1961, 32, 510-519.58. Baldacchino, A. J.; Collins, M. I.; Nielsen, M. P.; Schmidt, T. W.; McCamey, D. R. and Tayebjee, M. J. Y., Singlet Fission Photovoltaics: Progress and Promising Pathways, Chem. Phys. Rev., 2022, 3, 021304.59. Hanna, M. C. and Nozik, A. J., Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers, J. Appl. Phys., 2006, 100, 074510.60. Ehrler, B.; Musselman, K. P.; Böhm, M. L.; Friend, R. H. and Greenham, N. C., Hybrid Pentacene/a-Silicon Solar Cells Utilizing Multiple Carrier Generation via Singlet Exciton Fission, Appl. Phys. Lett., 2012, 101, 153507.61. Deng, G.-H.; Qian, Y.; Li, X.; Zhang, T.; Jiang, W.; Harutyunyan, A. R.; Chen, G.; Chen, H. and Rao, Y., Singlet Fission Driven by Anisotropic Vibronic Coupling in Single-Crystalline Pentacene, J. Phys. Chem. Lett., 2021, 12, 3142-3150.62. Smith, M. B. and Michl, J., Singlet Fission, Chem. Rev., 2010, 110, 6891-6936.63. Poletayev, A. D.; Clark, J.; Wilson, M. W. B.; Rao, A.; Makino, Y.; Hotta, S. and Friend, R. H., Triplet Dynamics in Pentacene Crystals: Applications to Fission-Sensitized Photovoltaics, Adv. Mater., 2014, 26, 919-924.64. Pace, N. A.; Korovina, N. V.; Clikeman, T. T.; Holliday, S.; Granger, D. B.; Carroll, G. M.; Nanayakkara, S. U.; Anthony, J. E.; McCulloch, I.; Strauss, S. H., et al., Slow Charge Transfer from Pentacene Triplet States at the Marcus Optimum, Nat. Chem., 2020, 12, 63-70.65. MacQueen, R. W.; Liebhaber, M.; Niederhausen, J.; Mews, M.; Gersmann, C.; Jäckle, S.; Jäger, K.; Tayebjee, M. J. Y.; Schmidt, T. W.; Rech, B., et al., Crystalline Silicon Solar Cells with Tetracene Interlayers: The Path to Silicon-Singlet Fission Heterojunction Devices, Mater. Horiz., 2018, 5, 1065-1075.66. Einzinger, M.; Wu, T.; Kompalla, J. F.; Smith, H. L.; Perkinson, C. F.; Nienhaus, L.; Wieghold, S.; Congreve, D. N.; Kahn, A.; Bawendi, M. G., et al., Sensitization of Silicon by Singlet Exciton Fission in Tetracene, Nature, 2019, 571, 90-94.67. Lu, H.; Chen, X.; Anthony, J. E.; Johnson, J. C. and Beard, M. C., Sensitizing Singlet Fission with Perovskite Nanocrystals, J. Am. Chem. Soc., 2019, 141, 4919-4927.68. Guo, D.; Ma, L.; Zhou, Z.; Lin, D.; Wang, C.; Zhao, X.; Zhang, F.; Zhang, J. and Nie, Z., Charge Transfer Dynamics in a Singlet Fission Organic Molecule and Organometal Perovskite Bilayer Structure, J. Mater. Chem. A, 2020, 8, 5572-5579.69. Wang, Y.; Kavanagh, S. R.; Burgués-Ceballos, I.; Walsh, A.; Scanlon, D. O. and Konstantatos, G., Cation Disorder Engineering Yields AgBiS2 Nanocrystals with Enhanced Optical Absorption for Efficient Ultrathin Solar Cells, Nat. Photonics, 2022, 16, 235-241.70. Oh, J. T.; Bae, S. Y.; Yang, J.; Ha, S. R.; Song, H.; Lee, C. B.; Shome, S.; Biswas, S.; Lee, H.-M.; Seo, Y.-H., et al., Ultra-Stable All-Inorganic Silver Bismuth Sulfide Colloidal Nanocrystal Photovoltaics Using pin Type Architecture, J. Power Sources, 2021, 514, 230585.71. Burgués-Ceballos, I.; Wang, Y. and Konstantatos, G., Mixed AgBiS2 Nanocrystals for Photovoltaics and Photodetectors, Nanoscale, 2022, 14, 4987-4993.72. Geng, P.; Chen, D.; Shivarudraiah, S. B.; Chen, X.; Guo, L. and Halpert, J. E., Carrier Dynamics of Efficient Triplet Harvesting in AgBiS2/Pentacene Singlet Fission Solar Cells, Adv. Sci., 2023, 10, 2300177.73. Wang, L.; Wu, Y.; Chen, J.; Wang, L.; Liu, Y.; Yu, Z.; Yao, J. and Fu, H., Absence of Intramolecular Singlet Fission in Pentacene–Perylenediimide Heterodimers: The Role of Charge Transfer State, J. Phys. Chem. Lett., 2017, 8, 5609-5615.74. Wilson, M. W. B.; Rao, A.; Clark, J.; Kumar, R. S. S.; Brida, D.; Cerullo, G. and Friend, R. H., Ultrafast Dynamics of Exciton Fission in Polycrystalline Pentacene, J. Am. Chem. Soc., 2011, 133, 11830-11833.75. Tabachnyk, M.; Ehrler, B.; Gélinas, S.; Böhm, M. L.; Walker, B. J.; Musselman, K. P.; Greenham, N. C.; Friend, R. H. and Rao, A., Resonant Energy Transfer of Triplet Excitons from Pentacene to PbSe Nanocrystals, Nat. Mater., 2014, 13, 1033-1038.76. Rao, A.; Wilson, M. W. B.; Hodgkiss, J. M.; Albert-Seifried, S.; Bässler, H. and Friend, R. H., Exciton Fission and Charge Generation via Triplet Excitons in Pentacene/C60 Bilayers, J. Am. Chem. Soc., 2010, 132, 12698-12703.77. Munson, K. T.; Gan, J.; Grieco, C.; Doucette, G. S.; Anthony, J. E. and Asbury, J. B., Ultrafast Triplet Pair Separation and Triplet Trapping following Singlet Fission in Amorphous Pentacene Films, J. Phys. Chem. C, 2020, 124, 23567-23578.78. Grieco, C.; Doucette, G. S.; Pensack, R. D.; Payne, M. M.; Rimshaw, A.; Scholes, G. D.; Anthony, J. E. and Asbury, J. B., Dynamic Exchange During Triplet Transport in Nanocrystalline TIPS-Pentacene Films, J. Am. Chem. Soc., 2016, 138, 16069-16080.79. Yang, L.; Tabachnyk, M.; Bayliss, S. L.; Böhm, M. L.; Broch, K.; Greenham, N. C.; Friend, R. H. and Ehrler, B., Solution-Processable Singlet Fission Photovoltaic Devices, Nano Lett., 2015, 15, 354-358.80. Burgués-Ceballos, I.; Wang, Y.; Akgul, M. Z. and Konstantatos, G., Colloidal AgBiS2 Nanocrystals with Reduced Recombination Yield 6.4% Power Conversion Efficiency in Solution-Processed Solar Cells, Nano Energy, 2020, 75, 104961.81. Liu, J.; Xian, K.; Ye, L. and Zhou, Z., Open-Circuit Voltage Loss in Lead Chalcogenide Quantum Dot Solar Cells, Adv. Mater., 2021, 33, 2008115.82. Burkhard, G. F.; Hoke, E. T. and McGehee, M. D., Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells, Adv. Mater., 2010, 22, 3293-3297.83. Ahn, J.; Lee, E.; Tan, J.; Yang, W.; Kim, B. and Moon, J., A New Class of Chiral Semiconductors: Chiral-Organic-Molecule-Incorporating Organic–Inorganic Hybrid Perovskites, Mater. Horiz., 2017, 4, 851-856.84. Naciri, J.; Shenoy, D. K.; Keller, P.; Gray, S.; Crandall, K. and Shashidhar, R., Synthesis and Pyroelectric Properties of Novel Ferroelectric Organosiloxane Liquid Crystalline Materials, Chem. Mater., 2002, 14, 5134-5139.85. Yang, C.-K.; Chen, W.-N.; Ding, Y.-T.; Wang, J.; Rao, Y.; Liao, W.-Q.; Tang, Y.-Y.; Li, P.-F.; Wang, Z.-X. and Xiong, R.-G., The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [R- and S-1-(4-Chlorophenyl)ethylammonium]2PbI4, Adv. Mater., 2019, 31, 1808088.86. Long, G.; Jiang, C.; Sabatini, R.; Yang, Z.; Wei, M.; Quan, L. N.; Liang, Q.; Rasmita, A.; Askerka, M.; Walters, G., et al., Spin Control in Reduced-Dimensional Chiral Perovskites, Nat. Photonics, 2018, 12, 528-533.87. Chen, W.; Zhang, S.; Zhou, M.; Zhao, T.; Qin, X.; Liu, X.; Liu, M. and Duan, P., Two-Photon Absorption-Based Upconverted Circularly Polarized Luminescence Generated in Chiral Perovskite Nanocrystals, J. Phys. Chem. Lett., 2019, 10, 3290-3295.88. He, T.; Li, J.; Li, X.; Ren, C.; Luo, Y.; Zhao, F.; Chen, R.; Lin, X. and Zhang, J., Spectroscopic Studies of Chiral Perovskite Nanocrystals, Appl. Phys. Lett., 2017, 111, 151102.89. Long, G.; Sabatini, R.; Saidaminov, M. I.; Lakhwani, G.; Rasmita, A.; Liu, X.; Sargent, E. H. and Gao, W., Chiral-Perovskite Optoelectronics, Nat. Rev. Mater., 2020, 5, 423-439.90. Rochat, E.; Walker, S. D. and Parker, M. C., Polarisation and Wavelength Division Multiplexing at 1.55μm for Bandwidth Enhancement of Multimode Fibre Based Access Networks, Opt. Express, 2004, 12, 2280-2292.91. Williams, R.; Song, K.; Faust, W. and Leung, C., Off-Center Self-Trapped Excitons and Creation of Lattice Defects in Alkali Halide Crystals, Phys. Rev. B, 1986, 33, 7232.92. Menzel, D., Valence and Core Excitations in Rare Gas Mono- and Multilayers: Production, Decay, and Desorption of Neutrals and Ions, Appl. Phys. A, 1990, 51, 163-171.93. Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W. and Park, N. G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell, Nanoscale, 2011, 3, 4088-4093.94. Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T. and Luther, J. M., Quantum Dot-Induced Phase Stabilization of α-CsPbI3 Perovskite for High-Efficiency Photovoltaics, Science, 2016, 354, 92-95.95. Li, G. R.; Tan, Z. K.; Di, D. W.; Lai, M. L.; Jiang, L.; Lim, J. H. W.; Friend, R. H. and Greenham, N. C., Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix, Nano Lett., 2015, 15, 2640-2644.96. Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D. and Rand, B. P., Efficient Perovskite Light-Emitting Diodes Featuring Nanometre-Sized Crystallites, Nat. Photonics, 2017, 11, 108-115.97. Park, K.; Lee, J. W.; Kim, J. D.; Han, N. S.; Jang, D. M.; Jeong, S.; Park, J. and Song, J. K., Light-Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers, J. Phys. Chem. Lett., 2016, 7, 3703-3710.98. Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C. and Xiong, Q. H., Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers, Nano Lett., 2014, 14, 5995-6001.99. Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S. K.; Bladt, E.; Kshirsagar, A. S.; Wang, Z.; Yin, J.; Wang, Y., et al., State of the Art and Prospects for Halide Perovskite Nanocrystals, ACS Nano, 2021, 15, 10775–10981.100. Sun, J.; Yang, J.; Lee, J. I.; Cho, J. H. and Kang, M. S., Lead-Free Perovskite Nanocrystals for Light-Emitting Devices, J. Phys. Chem. Lett., 2018, 9, 1573-1583.101. Fan, Q.; Biesold-McGee, G. V.; Ma, J.; Xu, Q.; Pan, S.; Peng, J. and Lin, Z., Lead-Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties, Angew. Chem. Int. Ed., 2020, 59, 1030-1046.102. Swarnkar, A.; Ravi, V. K. and Nag, A., Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping, ACS Energy Lett., 2017, 2, 1089-1098.103. Lian, L.; Zheng, M.; Zhang, P.; Zheng, Z.; Du, K.; Lei, W.; Gao, J.; Niu, G.; Zhang, D. and Zhai, T., Photophysics in Cs3Cu2X5 (X = Cl, Br, or I): Highly Luminescent Self-Trapped Excitons from Local Structure Symmetrization, Chem. Mater., 2020, 32, 3462-3468.104. Li, Y.; Zhou, Z.; Tewari, N.; Ng, M.; Geng, P.; Chen, D.; Ko, P. K.; Qammar, M.; Guo, L. and Halpert, J. E., Progress in Copper Metal Halides for Optoelectronic Applications, Mater. Chem. Front., 2021, 5, 4796-4820.105. Luo, Z. S.; Li, Q.; Zhang, L. M.; Wu, X. T.; Tan, L.; Zou, C.; Liu, Y. J. and Quan, Z. W., 0D Cs3Cu2X5 (X = I, Br, and Cl) Nanocrystals: Colloidal Syntheses and Optical Properties, Small, 2020, 16, 1905226.106. Vashishtha, P.; Nutan, G. V.; Griffith, B. E.; Fang, Y. A.; Giovanni, D.; Jagadeeswararao, M.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Hanna, J. V., et al., Cesium Copper Iodide Tailored Nanoplates and Nanorods for Blue, Yellow, and White Emission, Chem. Mater., 2019, 31, 9003-9011.107. Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L., et al., Efficient and Reabsorption-Free Radioluminescence in Cs3Cu2I5 Nanocrystals with Self-Trapped Excitons, Adv. Sci., 2020, 7, 2000195.108. Cheng, P. F.; Sun, L.; Feng, L.; Yang, S. Q.; Yang, Y.; Zheng, D. Y.; Zhao, Y.; Sang, Y. B.; Zhang, R. L.; Wei, D. H., et al., Colloidal Synthesis and Optical Properties of All-Inorganic Low-Dimensional Cesium Copper Halide Nanocrystals, Angew. Chem. Int. Ed., 2019, 58, 16087-16091.109. Li, Y.; Shi, Z. F.; Wang, L. T.; Chen, Y. C.; Liang, W. Q.; Wu, D.; Li, X. J.; Zhang, Y.; Shan, C. X. and Fang, X. S., Solution-Processed One-Dimensional CsCu2I3 Nanowires for Polarization-Sensitive and Flexible Ultraviolet Photodetectors, Mater. Horiz., 2020, 7, 1613-1622.110. Li, T.; Mo, X. M.; Peng, C. Y.; Lu, Q. C.; Qi, C. J.; Tao, X. M.; Ouyang, Y. F. and Zhou, Y. L., Distinct Green Electroluminescence from Lead-Free CsCuBr2 Halide Micro-Crosses, Chem. Commun., 2019, 55, 4554-4557.111. Lu, Y. T.; Li, G. S.; Fu, S. X.; Fang, S. F. and Li, L. P., CsCu2I3 Nanocrystals: Growth and Structural Evolution for Tunable Light Emission, ACS Omega, 2021, 6, 544-552.112. Hu, X. D.; Li, Y. L.; Wu, Y.; Chen, W. W.; Zeng, H. B. and Li, X. M., One-Pot Synthesis of Cs3Cu2I5 Nanocrystals Based on Thermodynamic Equilibrium, Mater. Chem. Front., 2021, 5, 6152-6159.113. Zhang, F.; Liang, W.; Wang, L.; Ma, Z.; Ji, X.; Wang, M.; Wang, Y.; Chen, X.; Wu, D. and Li, X., Moisture-Induced Reversible Phase Conversion of Cesium Copper Iodine Nanocrystals Enables Advanced Anti-Counterfeiting, Adv. Funct. Mater., 2021, 2105771.114. Zhou, Z.; Li, Y.; Xing, Z.; Li, Z.; Wong, K. S. and Halpert, J. E., Potassium and Rubidium Copper Halide A2CuX3 (A = K, Rb, X = Cl, Br) Micro-and Nanocrystals with Near Unity Quantum Yields for White Light Applications, ACS Appl. Nano Mater., 2021, 4, 14188-14196.115. Booker, E. P.; Griffiths, J. T.; Eyre, L.; Ducati, C.; Greenham, N. C. and Davis, N. J. L. K., Synthesis, Characterization, and Morphological Control of Cs2CuCl4 Nanocrystals, J. Phys. Chem. C, 2019, 123, 16951-16956.116. Wang, L. T.; Shi, Z. F.; Ma, Z. Z.; Yang, D. W.; Zhang, F.; Ji, X. Z.; Wang, M.; Chen, X.; Na, G. R.; Chen, S., et al., Colloidal Synthesis of Ternary Copper Halide Nanocrystals for High-Efficiency Deep-Blue Light-Emitting Diodes with a Half-Lifetime above 100 h, Nano Lett., 2020, 20, 3568-3576.117. Ng, M.; Geng, P.; Shivarudraiah, S. B.; Guo, L. and Halpert, J. E., Synthesis of Cesium Copper Bromide Nanorods with Strong Linearly Polarized Emission, Adv. Opt. Mater., 2022, 10, 2201031.118. Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W. and Alivisatos, A. P., Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods, Science, 2001, 292, 2060-2063.119. Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y. and Lieber, C. M., Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires, Science, 2001, 293, 1455-1457.120. Huynh, W. U.; Dittmer, J. J. and Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells, Science, 2002, 295, 2425-2427.121. Amgar, D.; Stern, A.; Rotem, D.; Porath, D. and Etgar, L., Tunable Length and Optical Properties of CsPbX3 (X = Cl, Br, I) Nanowires with a Few Unit Cells, Nano Lett., 2017, 17, 1007-1013.122. Zhang, C.; Chen, J.; Wang, S.; Kong, L.; Lewis, S. W.; Yang, X.; Rogach, A. L. and Jia, G., Metal Halide Perovskite Nanorods: Shape Matters, Adv. Mater., 2020, 32, 2002736.123. Lakowicz, Principles of Fluorescence Spectroscopy, Springer: 3rd ed., 2006.124. Jameson, D. M. and Ross, J. A., Fluorescence Polarization/Anisotropy in Diagnostics and Imaging, Chem. Rev., 2010, 110, 2685-2708.125. Hadar, I.; Hitin, G. B.; Sitt, A.; Faust, A. and Banin, U., Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble, J. Phys. Chem. Lett., 2013, 4, 502-507.126. Wang, X.; Wang, Y.; Gao, W.; Song, L.; Ran, C.; Chen, Y. and Huang, W., Polarization-Sensitive Halide Perovskites for Polarized Luminescence and Detection: Recent Advances and Perspectives, Adv. Mater., 2021, 33, 2003615.127. Gao, Y.; Zhao, L. Y.; Shang, Q. Y.; Zhong, Y. G.; Liu, Z.; Chen, J.; Zhang, Z. P.; Shi, J.; Du, W. N.; Zhang, Y. F., et al., Ultrathin CsPbX3 Nanowire Arrays with Strong Emission Anisotropy, Adv. Mater., 2018, 30, 1801805.128. Vezzoli, S.; Monceau, M.; Lemenager, G.; Glorieux, Q.; Giacobino, E.; Carbone, L.; De Vittorio, M. and Bramati, A., Exciton Fine Structure of CdSe/CdS Nano crystals Determined by Polarization Microscopy at Room Temperature, ACS Nano, 2015, 9, 7992-8003.129. Tauber, D.; Dobrovolsky, A.; Camacho, R. and Scheblykin, I. G., Exploring the Electronic Band Structure of Organometal Halide Perovskite via Photoluminescence Anisotropy of Individual Nanocrystals, Nano Lett., 2016, 16, 5087-5094.130. Wang, D.; Wu, D.; Dong, D.; Chen, W.; Hao, J. J.; Qin, J.; Xu, B.; Wang, K. and Sun, X. W., Polarized Emission from CsPbX3 Perovskite Quantum Dots, Nanoscale, 2016, 8, 11565-11570.131. Jurow, M. J.; Lampe, T.; Penzo, E.; Kang, J.; Koc, M. A.; Zechel, T.; Nett, Z.; Brady, M.; Wang, L. W.; Alivisatos, A. P., et al., Tunable Anisotropic Photon Emission from Self-Organized CsPbBr3 Perovskite Nanocrystals, Nano Lett., 2017, 17, 4534-4540.132. Sitt, A.; Salant, A.; Menagen, G. and Banin, U., Highly Emissive Nano Rod-In-Rod Heterostructures with Strong Linear Polarization, Nano Lett., 2011, 11, 2054-2060.133. Diroll, B. T.; Dadosh, T.; Koschitzky, A.; Goldman, Y. E. and Murray, C. B., Interpreting the Energy-Dependent Anisotropy of Colloidal Nanorods Using Ensemble and Single-Particle Spectroscopy, J. Phys. Chem. C, 2013, 117, 23928-23937.134. Zhang, Z.-X.; Li, C.; Lu, Y.; Tong, X.-W.; Liang, F.-X.; Zhao, X.-Y.; Wu, D.; Xie, C. and Luo, L.-B., Sensitive Deep Ultraviolet Photodetector and Image Sensor Composed of Inorganic Lead-Free Cs3Cu2I5 Perovskite with Wide Bandgap, J. Phys. Chem. Lett., 2019, 10, 5343-5350.135. Poglitsch, A. and Weber, D., Dynamic Disorder in Methylammoniumtrihalogenoplumbates(II) Observed by Millimeter-Wave Spectroscopy, J. Chem. Phys., 1987, 87, 6373-6378.136. Srivastava, A. K.; Zhang, W.; Schneider, J.; Rogach, A. L.; Chigrinov, V. G. and Kwok, H.-S., Photoaligned Nanorod Enhancement Films with Polarized Emission for Liquid-Crystal-Display Applications, Adv. Mater., 2017, 29, 1701091.137. Cunningham, P. D.; Souza, J. B., Jr.; Fedin, I.; She, C.; Lee, B. and Talapin, D. V., Assessment of Anisotropic Semiconductor Nanorod and Nanoplatelet Heterostructures with Polarized Emission for Liquid Crystal Display Technology, ACS Nano, 2016, 10, 5769-5781.138. He, J.; Towers, A.; Wang, Y.; Yuan, P.; Jiang, Z.; Chen, J.; Gesquiere, A. J.; Wu, S.-T. and Dong, Y., In Situ Synthesis and Macroscale Alignment of CsPbBr3 Perovskite Nanorods in a Polymer Matrix, Nanoscale, 2018, 10, 15436-15441.139. Amit, Y.; Faust, A.; Lieberman, I.; Yedidya, L. and Banin, U., Semiconductor Nanorod Layers Aligned Through Mechanical Rubbing, Phys. Status Solidi, 2012, 209, 235-242.140. Singh, A.; Gunning, R. D.; Ahmed, S.; Barrett, C. A.; English, N. J.; Garate, J.-A. and Ryan, K. M., Controlled Semiconductor Nanorod Assembly from Solution: Influence of Concentration, Charge and Solvent Nature, J. Mater. Chem., 2012, 22, 1562-1569.141. Ahmed, W.; Kooij, E. S.; van Silfhout, A. and Poelsema, B., Quantitative Analysis of Gold Nanorod Alignment after Electric Field-Assisted Deposition, Nano Lett., 2009, 9, 3786-3794.142. Yuan, J.; Gao, H.; Schacher, F.; Xu, Y.; Richter, R.; Tremel, W. and Müller, A. H. E., Alignment of Tellurium Nanorods via a Magnetization−Alignment− Demagnetization (“MAD”) Process Assisted by an External Magnetic Field, ACS Nano, 2009, 3, 1441-1450.143. Yaroshchuk, O. and Reznikov, Y., Photoalignment of Liquid Crystals: Basics and Current Trends, J. Mater. Chem., 2012, 22, 286-300.144. Oscurato, S. L.; Salvatore, M.; Maddalena, P. and Ambrosio, A., From Nanoscopic to Macroscopic Photo-Driven Motion in Azobenzene-Containing Materials, Nanophotonics, 2018, 7, 1387-1422.145. Xiong, J. and Wu, S.-T., Planar Liquid Crystal Polarization Optics for Augmented Reality and Virtual Reality: From Fundamentals to Applications, eLight, 2021, 1, 3.146. Borchert, H., Solar Cells Based on Colloidal Nanocrystals, Springer Cham: 1st ed., 2014.147. Baskoutas, S. and Terzis, A. F., Size-Dependent Band Gap of Colloidal Quantum Dots, J. Appl. Phys., 2006, 99, 013708.148. Meulenberg, R. W.; Lee, J. R. I.; Wolcott, A.; Zhang, J. Z.; Terminello, L. J. and van Buuren, T., Determination of the Exciton Binding Energy in CdSe Quantum Dots, ACS Nano, 2009, 3, 325-330.149. Butkus, J.; Vashishtha, P.; Chen, K.; Gallaher, J. K.; Prasad, S. K. K.; Metin, D. Z.; Laufersky, G.; Gaston, N.; Halpert, J. E. and Hodgkiss, J. M., The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals, Chem. Mater., 2017, 29, 3644-3652.150. Pang, P.; Jin, G.; Liang, C.; Wang, B.; Xiang, W.; Zhang, D.; Xu, J.; Hong, W.; Xiao, Z.; Wang, L., et al., Rearranging Low-Dimensional Phase Distribution of Quasi-2D Perovskites for Efficient Sky-Blue Perovskite Light-Emitting Diodes, ACS Nano, 2020, 14, 11420-11430.151. Gangishetty, M. K.; Hou, S.; Quan, Q. and Congreve, D. N., Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes, Adv. Mater., 2018, 30.152. Liu, X.-K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R. H. and Gao, F., Metal Halide Perovskites for Light-Emitting Diodes, Nat. Mater., 2021, 20, 10-21.153. Shen, W.; Yu, Y.; Zhang, W.; Chen, Y.; Zhang, J.; Yang, L.; Feng, J.; Cheng, G.; Liu, L. and Chen, S., Efficient Pure Blue Light-Emitting Diodes Based on CsPbBr3 Quantum-Confined Nanoplates, ACS Appl. Mater. Interfaces, 2022, 14, 5682-5691.154. Akkerman, Q. A.; Nguyen, T. P. T.; Boehme, S. C.; Montanarella, F.; Dirin, D. N.; Wechsler, P.; Beiglböck, F.; Rainò, G.; Erni, R.; Katan, C., et al., Controlling the Nucleation and Growth Kinetics of Lead Halide Perovskite Quantum Dots, Science, 2022, 377, 1406-1412.155. Liu, Y.; Cui, J.; Du, K.; Tian, H.; He, Z.; Zhou, Q.; Yang, Z.; Deng, Y.; Chen, D.; Zuo, X., et al., Efficient Blue Light-Emitting Diodes Based on quantum-Confined Bromide Perovskite Nanostructures, Nat. Photonics, 2019, 13, 760-764.156. Wu, Y.; Wei, C.; Li, X.; Li, Y.; Qiu, S.; Shen, W.; Cai, B.; Sun, Z.; Yang, D.; Deng, Z., et al., In Situ Passivation of PbBr64– Octahedra toward Blue Luminescent CsPbBr3 Nanoplatelets with Near 100% Absolute Quantum Yield, ACS Energy Lett., 2018, 3, 2030-2037.157. Wu, Y.; Li, X. and Zeng, H., Highly Luminescent and Stable Halide Perovskite Nanocrystals, ACS Energy Lett., 2019, 4, 673-681.158. Su, S.; Tao, J.; Sun, C.; Xu, D.; Zhang, H.; Wei, T.; Zhang, Z.-H.; Wang, Z.; Fan, C. and Bi, W., Stable and Highly Efficient Blue-Emitting CsPbBr3 Perovskite Nanomaterials via Kinetic-Controlled Growth, Chem. Eng. J., 2021, 419, 129612.159. Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X., et al., All-Inorganic Perovskite Solar Cells, J. Am. Chem. Soc., 2016, 138, 15829-15832.160. Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V. and Manna, L., Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals, Nat. Mater., 2018, 17, 394-405.161. Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X.; Han, S.; Liang, L.; Yi, Z., et al., All-Inorganic Perovskite Nanocrystal Scintillators, Nature, 2018, 561, 88-93.162. Bian, H.; Bai, D.; Jin, Z.; Wang, K.; Liang, L.; Wang, H.; Zhang, J.; Wang, Q. and Liu, S., Graded Bandgap CsPbI2+xBr1−x Perovskite Solar Cells with a Stabilized Efficiency of 14.4%, Joule, 2018, 2, 1500-1510.163. Chen, D.; Yuan, S.; Chen, J.; Zhong, J. and Xu, X., Robust CsPbX3 (X = Cl, Br, and I) Perovskite Quantum Dot Embedded Glasses: Nanocrystallization, Improved Stability and Visible Full-Spectral Tunable Emissions, J. Mater. Chem. C, 2018, 6, 12864-12870.164. Su, Y.; Chen, X.; Ji, W.; Zeng, Q.; Ren, Z.; Su, Z. and Liu, L., Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX3 (X = Cl, Br, I) Perovskite QDs toward the Tunability of Entire Visible Light, ACS Appl. Mater. Interfaces, 2017, 9, 33020-33028.165. Dong, Y.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D. and Son, D. H., Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium, Nano Lett., 2018, 18, 3716-3722.166. Luo, H.; Huang, Y.; Liu, H.; Zhang, B. and Song, J., Ionic Liquid Assisted Pure Blue Emission CsPbBr3 Quantum Dots with Improved Optical Properties and Alkyl Chain Regulated Stability, Chem. Eng. J., 2022, 430, 132790.167. Shu, B.; Chang, Y.; Yang, S.; Dong, L.; Zhang, J.; Cheng, X. and Yu, D., Fabrication and Optical Properties of High-Quality Blue-Emitting CsPbBr3 QDs-PMMA films, Opt. Mater., 2021, 115, 111069.168. Bi, C.; Yao, Z.; Sun, X.; Wei, X.; Wang, J. and Tian, J., Perovskite Quantum Dots with Ultralow Trap Density by Acid Etching-Driven Ligand Exchange for High Luminance and Stable Pure-Blue Light-Emitting Diodes, Adv. Mater., 2021, 33, 2006722.169. Shi, S.; Wang, Y.; Zeng, S.; Cui, Y. and Xiao, Y., Surface Regulation of CsPbBr3 Quantum Dots for Standard Blue-Emission with Boosted PLQY, Adv. Opt. Mater., 2020, 8, 2000167.170. Shamsi, J.; Kubicki, D.; Anaya, M.; Liu, Y.; Ji, K.; Frohna, K.; Grey, C. P.; Friend, R. H. and Stranks, S. D., Stable Hexylphosphonate-Capped Blue-Emitting Quantum-Confined CsPbBr3 Nanoplatelets, ACS Energy Lett., 2020, 5, 1900-1907.171. Yin, W.; Li, M.; Dong, W.; Luo, Z.; Li, Y.; Qian, J.; Zhang, J.; Zhang, W.; Zhang, Y.; Kershaw, S. V., et al., Multidentate Ligand Polyethylenimine Enables Bright Color-Saturated Blue Light-Emitting Diodes Based on CsPbBr3 Nanoplatelets, ACS Energy Lett., 2021, 6, 477-484.172. Wang, S.; Wang, W.; Donmez, S.; Xin, Y. and Mattoussi, H., Engineering Highly Fluorescent and Colloidally Stable Blue-Emitting CsPbBr3 Nanoplatelets Using Polysalt/PbBr2 Ligands, Chem. Mater., 2022, 34, 4924-4936.173. Leng, J.; Wang, T.; Zhao, X.; Ong, E. W. Y.; Zhu, B.; Ng, J. D. A.; Wong, Y.-C.; Khoo, K. H.; Tamada, K. and Tan, Z.-K., Thermodynamic Control in the Synthesis of Quantum-Confined Blue-Emitting CsPbBr3 Perovskite Nanostrips, J. Phys. Chem. Lett., 2020, 11, 2036-2043.174. Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Müller-Buschbaum, P.; Stranks, S. D.; Urban, A. S., et al., Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair, Nano Lett., 2018, 18, 5231-5238.175. Chen, Y.-L.; Hu, Y.-H.; Ma, L.; Zhang, X.-y.; Zhao, N.-X.; Yang, X.; Zhang, Y.-S.; Gu, Y.-L.; Xu, S.-L.; Dong, X., et al., Self-Assembled CsPbBr3 Quantum Dots with Wavelength-Tunable Photoluminescence for Efficient Active Jamming, Nanoscale, 2022, 14, 17900-17907.176. He, H.; Tang, B. and Ma, Y., Controlled Synthesis of Quantum Confined CsPbBr3 Perovskite Nanocrystals under Ambient Conditions, Nanotechnology, 2018, 29, 055601.177. Cao, J.; Yan, C.; Luo, C.; Li, W.; Zeng, X.; Xu, Z.; Fu, X.; Wang, Q.; Chu, X.; Huang, H., et al., Cryogenic-Temperature Thermodynamically Suppressed and Strongly Confined CsPbBr3 Quantum Dots for Deeply Blue Light-Emitting Diodes, Adv. Opt. Mater., 2021, 9, 2100300.178. Jiang, M.; Hu, Z.; Liu, Z.; Wu, Z.; Ono, L. K. and Qi, Y., Engineering Green-to-Blue Emitting CsPbBr3 Quantum-Dot Films with Efficient Ligand Passivation, ACS Energy Lett., 2019, 4, 2731-2738.179. Luo, C.; Yan, C.; Li, W.; Chun, F.; Xie, M.; Zhu, Z.; Gao, Y.; Guo, B. and Yang, W., Ultrafast Thermodynamic Control for Stable and Efficient Mixed Halide Perovskite Nanocrystals, Adv. Funct. Mater., 2020, 30, 2000026.180. Bi, C.; Wang, S.; Kershaw, S. V.; Zheng, K.; Pullerits, T.; Gaponenko, S.; Tian, J. and Rogach, A. L., Spontaneous Self-Assembly of Cesium Lead Halide Perovskite Nanoplatelets into Cuboid Crystals with High Intensity Blue Emission, Adv. Sci., 2019, 6, 1900462.181. Elumalai, N. K.; Mahmud, M. A.; Wang, D. and Uddin, A., Perovskite Solar Cells: Progress and Advancements, Energies, 2016, 9.182. Wang, S.; Sakurai, T.; Wen, W. and Qi, Y., Energy Level Alignment at Interfaces in Metal Halide Perovskite Solar Cells, Adv. Mater. Interfaces, 2018, 5, 1800260.183. Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M. and Kamat, P. V., Making and Breaking of Lead Halide Perovskites, Acc. Chem. Res., 2016, 49, 330-338.184. Boyd, C. C.; Cheacharoen, R.; Leijtens, T. and McGehee, M. D., Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics, Chem. Rev., 2019, 119, 3418-3451.185. Akbulatov, A. F.; Luchkin, S. Y.; Frolova, L. A.; Dremova, N. N.; Gerasimov, K. L.; Zhidkov, I. S.; Anokhin, D. V.; Kurmaev, E. Z.; Stevenson, K. J. and Troshin, P. A., Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites, J. Phys. Chem. Lett., 2017, 8, 1211-1218.186. Guggisberg, D.; Yakunin, S.; Neff, C.; Aebli, M.; Günther, D.; Kovalenko, M. V. and Dirin, D. N., Colloidal CsPbX3 Nanocrystals with Thin Metal Oxide Gel Coatings, Chem. Mater., 2023, 35, 2827-2834.187. Li, M.; Zhang, X. and Yang, P., Controlling the Growth of a SiO2 Coating on Hydrophobic CsPbBr3 Nanocrystals towards Aqueous Transfer and High Luminescence, Nanoscale, 2021, 13, 3860-3867.188. Trinh, C. K.; Lee, H.; So, M. G. and Lee, C.-L., Synthesis of Chemically Stable Ultrathin SiO2-Coated Core–Shell Perovskite QDs via Modulation of Ligand Binding Energy for All-Solution-Processed Light-Emitting Diodes, ACS Appl. Mater. Interfaces, 2021, 13, 29798-29808.189. Rossi, C.; Scarfiello, R.; Brescia, R.; Goldoni, L.; Caputo, G.; Carbone, L.; Colombara, D.; De Trizio, L.; Manna, L. and Baranov, D., Exploiting the Transformative Features of Metal Halides for the Synthesis of CsPbBr3@SiO2 Core–Shell Nanocrystals, Chem. Mater., 2022, 34, 405-413.190. Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T. and Scherer, A., Surface-Plasmon-Enhanced Light Emitters Based on InGaN Quantum Wells, Nat. Mater., 2004, 3, 601-605.191. Klopfer, M. and Jain, R. K., Plasmonic Quantum Dots for Nonlinear Optical Applications Opt. Mater. Express, 2011, 1, 1353-1366.192. Pattadar, D. K. and Zamborini, F. P., Size Stability Study of Catalytically Active Sub-2 nm Diameter Gold Nanoparticles Synthesized with Weak Stabilizers, J. Am. Chem. Soc., 2018, 140, 14126-14133.193. Zhang, L.; Sun, C.; He, T.; Jiang, Y.; Wei, J.; Huang, Y. and Yuan, M., High-Performance Quasi-2D Perovskite Light-Emitting Diodes: From Materials to Devices, Light Sci. Appl., 2021, 10, 61.194. Leung, T. L.; Ahmad, I.; Syed, A. A.; Ng, A. M. C.; Popović, J. and Djurišić, A. B., Stability of 2D and Quasi-2D Perovskite Materials and Devices, Commun. Mater., 2022, 3, 63.195. Liu, P.; Yu, S. and Xiao, S., Research Progress on Two-Dimensional (2D) Halide Organic–Inorganic Hybrid Perovskites, Sustainable Energy & Fuels, 2021, 5, 3950-3978.196. Li, X.; Hoffman, J. M. and Kanatzidis, M. G., The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency, Chem. Rev., 2021, 121, 2230-2291.197. Thrithamarassery Gangadharan, D. and Ma, D., Searching for Stability at Lower Dimensions: Current Trends and Future Prospects of Layered Perovskite Solar Cells, Energy Environ. Sci., 2019, 12, 2860-2889.198. Sheng, X.; Li, Y.; Xia, M. and Shi, E., Quasi-2D Halide Perovskite Crystals and Their Optoelectronic Applications, J. Mater. Chem. A, 2022, 10, 19169-19183.199. Gan, L.; Li, J.; Fang, Z.; He, H. and Ye, Z., Effects of Organic Cation Length on Exciton Recombination in Two-Dimensional Layered Lead Iodide Hybrid Perovskite Crystals, J. Phys. Chem. Lett., 2017, 8, 5177-5183.200. Ni, L.; Huynh, U.; Cheminal, A.; Thomas, T. H.; Shivanna, R.; Hinrichsen, T. F.; Ahmad, S.; Sadhanala, A. and Rao, A., Real-Time Observation of Exciton–Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells, ACS Nano, 2017, 11, 10834-10843.201. Yuan, M.; Li Na, Q.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P., et al., Perovskite Energy Funnels for Efficient Light-Emitting Diodes, Nat. Nanotechnol., 2016, 11, 872-877.202. Jiang, Y.; Wei, J. and Yuan, M., Energy-Funneling Process in Quasi-2D Perovskite Light-Emitting Diodes, J. Phys. Chem. Lett., 2021, 12, 2593-2606.203. Lei, L.; Seyitliyev, D.; Stuard, S.; Mendes, J.; Dong, Q.; Fu, X.; Chen, Y.-A.; He, S.; Yi, X.; Zhu, L., et al., Efficient Energy Funneling in Quasi-2D Perovskites: From Light Emission to Lasing, Adv. Mater., 2020, 32, 1906571.204. Xing, G.; Wu, B.; Wu, X.; Li, M.; Du, B.; Wei, Q.; Guo, J.; Yeow, E. K. L.; Sum, T. C. and Huang, W., Transcending the Slow Bimolecular Recombination in Lead-Halide Perovskites for Electroluminescence, Nat. Commun., 2017, 8, 14558.205. Li, M.; Gao, Q.; Liu, P.; Liao, Q.; Zhang, H.; Yao, J.; Hu, W.; Wu, Y. and Fu, H., Amplified Spontaneous Emission Based on 2D Ruddlesden-Popper Perovskites, Adv. Funct. Mater., 2018, 28, 1707006.206. Leyden, M. R.; Matsushima, T.; Qin, C.; Ruan, S.; Ye, H. and Adachi, C., Amplified Spontaneous Emission in Phenylethylammonium Methylammonium Lead Iodide Quasi-2D Perovskites, Phys. Chem. Chem. Phys., 2018, 20, 15030-15036.207. Li, C. H. A.; Geng, P.; Shivarudraiah, S. B.; Ng, M.; Zhang, X.-F.; Xu, B.; Guo, L. and Halpert, J. E., The Multiple Roles of Metal Ion Dopants in Spectrally Stable, Efficient Quasi-2D Perovskite Sky-Blue Light-Emitting Devices, Adv. Opt. Mater., 2021, 9, 2100860.208. Li, Z.; Chen, Z.; Yang, Y.; Xue, Q.; Yip, H. L. and Cao, Y., Modulation of Recombination Zone Position for Quasi-Two-Dimensional Blue Perovskite Light-Emitting Diodes with Efficiency Exceeding 5%, Nat. Commun., 2019, 10, 1027.209. Ren, Z.; Li, L.; Yu, J.; Ma, R.; Xiao, X.; Chen, R.; Wang, K.; Sun, X. W.; Yin, W.-J. and Choy, W. C. H., Simultaneous Low-Order Phase Suppression and Defect Passivation for Efficient and Stable Blue Light-Emitting Diodes, ACS Energy Lett., 2020, 2569-2579.210. Wang, Q.; Wang, X.; Yang, Z.; Zhou, N.; Deng, Y.; Zhao, J.; Xiao, X.; Rudd, P.; Moran, A.; Yan, Y., et al., Efficient Sky-Blue Perovskite Light-Emitting Diodes via Photoluminescence Enhancement, Nat. Commun., 2019, 10, 5633.211. Vashishtha, P.; Griffith, B. E.; Brown, A. A. M.; Hooper, T. J. N.; Fang, Y.; Ansari, M. S.; Bruno, A.; Pu, S. H.; Mhaisalkar, S. G.; White, T., et al., Performance Enhanced Light-Emitting Diodes Fabricated from Nanocrystalline CsPbBr3 with In Situ Zn2+ Addition, ACS Appl. Electron. Mater., 2020, 2, 4002-4011.212. Lu, M.; Zhang, X.; Bai, X.; Wu, H.; Shen, X.; Zhang, Y.; Zhang, W.; Zheng, W.; Song, H.; Yu, W. W., et al., Spontaneous Silver Doping and Surface Passivation of CsPbI3 Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2%, ACS Energy Lett., 2018, 3, 1571-1577.213. Futscher, M. H.; Gangishetty, M. K.; Congreve, D. N. and Ehrler, B., Manganese Doping Stabilizes Perovskite Light-Emitting Diodes by Reducing Ion Migration, ACS Appl. Electron. Mater., 2020, 2, 1522-1528.214. Wood, V.; Halpert, J. E.; Panzer, M. J.; Bawendi, M. G. and Bulović, V., Alternating Current Driven Electroluminescence from ZnSe/ZnS:Mn/ZnS Nanocrystals, Nano Lett., 2009, 9, 2367-2371.215. Liu, W.; Lin, Q.; Li, H.; Wu, K.; Robel, I.; Pietryga, J. M. and Klimov, V. I., Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content, J. Am. Chem. Soc., 2016, 138, 14954-14961.216. Liu, T.; Jiang, Y.; Qin, M.; Liu, J.; Sun, L.; Qin, F.; Hu, L.; Xiong, S.; Jiang, X.; Jiang, F., et al., Tailoring Vertical Phase Distribution of Quasi-Two-Dimensional Perovskite Films via Surface Modification of Hole-Transporting Layer, Nat. Commun., 2019, 10, 878.217. Li, Y.; Zhou, Z.; Sheong, F. K.; Xing, Z.; Wong, K. S.; Sung, H. H. Y.; Williams, I. D. and Halpert, J. E., Organic–Inorganic Hybrid Alkali Copper Iodides for Bright Emission across the Visible Spectrum, Chem. Mater., 2023, 35, 1318-1324.218. Pan, G.; Bai, X.; Yang, D.; Chen, X.; Jing, P.; Qu, S.; Zhang, L.; Zhou, D.; Zhu, J.; Xu, W., et al., Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties, Nano Lett., 2017, 17, 8005-8011. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553084 |
专题 | 工学院_机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Geng P. Photophysical Processes in Ternary Metal Halides and Sulfides for Optoelectronic Applications[D]. 香港. 香港科技大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11951007-耿派-机械与能源工程系(21741KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[耿派]的文章 |
百度学术 |
百度学术中相似的文章 |
[耿派]的文章 |
必应学术 |
必应学术中相似的文章 |
[耿派]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论