[1] Moore G E. Cramming More Components onto Integrated Circuits[J]. Electronics, 1965, 38(8): 114-117.
[2] Mitchell W M. The Chips are Down for Moores Law[J]. Nature, 2016, 530: 144-147.
[3] Žutić I, Fabian J, Das S S. Spintronics: Fundamentals and Applications[J]. Reviews of Modern Physics, 2004, 76(2): 323–410.
[4] Barthelemy A, Baibich M N, Broto J M, et al. Giant Magnetoresistance of (001) Fe/(001) Cr Superlattices[J]. Physical Review Letter, 1988, 61(21): 2472-2475.
[5] Hasan M Z, Kane C L. Colloquium : Topological Insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045–3067.
[6] Qi X L, Zhang S C. The Quantum Spin Hall Effect and Topological Insulators[J]. Physics Today, 2010, 63(1): 33–38.
[7] Shen S Q, Shan W Y, Lu H Z. Topological Insulator and the Dirac Equation[J]. Spin, 2011, 01(01): 33–44.
[8] Qi X L, Zhang S C. Topological Insulators and Superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057–1110.
[9] Ren Y, Qiao Z, Niu Q. Topological Phases in Two-Dimensional Materials: a Review[J]. Reports On Progress in Physics, 2016, 79(6): 066501.
[10] Wu C, Bernevig B A, Zhang S C. Helical Liquid and the Edge of Quantum Spin Hall Systems[J]. Physical Review Letters, 2006, 96(10): 106401.
[11] Kane C L, Mele E J. Quantum Spin Hall Effect in Graphene[J]. Physical Review Letters, 2005, 95(22): 226801.
[12] Bernevig B A, Hughes T L, Zhang S C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells[J]. Science, 2006, 314(5806): 1757–1761.
[13] König M, Wiedmann S, Brune C, et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells[J]. Science, 2007, 318(5851): 766–770.
[14] Fu L, Kane C L, Mele E J. Topological Insulators in Three Dimensions[J]. Physical Review Letters, 2007, 98: 106803.
[15] Hsieh D, Xia Y, Wray L, et al. Observation of Unconventional Quantum Spin Textures in Topological Insulators[J]. Science, 2009, 323: 919-922.
[16] Hsieh D, Qian D, Wray L, et al. A Topological Dirac Insulator in a Quantum Spin Hall Phase[J]. Nature, 2008, 452(7190): 970-974.
[17] Kane C L, Mele E J. Z-2 Topological Order and the Quantum Spin Hall Effect[J]. Physical Review Letters, 2005, 95: 146802.
[18] Zhang H, Liu C X, Qi X L, et al. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface[J]. Nature Physics, 2009, 5(6): 438-442.
[19] Zhang H J, Liu C X, Qi X L, et al. Electronic Structures and Surface States of the Topological Insulator Bi1−xSbx[J]. Physical Review B, 2009, 80(08): 085307.
[20] Yazyev O V, Moore J E, Louie S G. Spin Polarization and Transportof Surface States in the Topological Insulators Bi2Se3 and Bi2Te3 from First Principles[J]. Physical Review Letters, 2010, 105: 266806.
[21] Carlson E K. An Intrinsically Magnetic Topological Insulator[J]. Physics, 2020, 13: S119.
[22] Nadeem M, Hamilton A R, Fuhrer M S, et al. Quantum Anomalous Hall Effect in Magnetic Doped Topological Insulators and Ferromagnetic Spin‐Gapless Semiconductors—A Perspective Review[J]. Small, 2020, 16(42): 1904322.
[23] Ning W, Mao Z. Recent Advancements in the Study of Intrinsic Magnetic Topological Insulators and Magnetic Weyl Semimetals[J]. APL Materials, 2020, 8(9): 090701.
[24] Wang P, Ge J, Li J, et al. Intrinsic Magnetic Topological Insulators[J]. The Innovation, 2021, 2(2): 100098.
[25] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators[J]. Science, 2010, 329(5987): 61-64.
[26] Chang C Z, Zhang J S, Feng X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator[J]. Science, 2013, 340(6129): 167-170.
[27] Katmis F, Lauter V, Nogueira F S, et al. A High-Temperature Ferromagnetic Topological Insulating Phase by Proximity Coupling[J]. Nature, 2016, 533: 513-516.
[28] Tang C, Chang C Z, Zhao G J, et al. Above 400 K Robust Perpendicular Ferromagnetic Phase in a Topological Insulator[J]. Science advances, 2017, 3: e1700307.
[29] Kim J, Kim K W, Wang H, Sinova J, Wu R Q. Understanding the Giant Enhancement of Exchange Interaction in Bi2Se3-EuS Heterostructures[J]. Physical Review Letters, 2017, 119: 027201.
[30] Huang B, Clark G, Moratalla E N, et al. Layer-Dependent Ferromagnetism in a van der Waals Crystal Down to the Monolayer Limit[J]. Nature, 2017, 546: 270-273.
[31] Gong C, Li L, Li Z L, et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional van der Waals Crystals[J]. Nature, 2017, 546: 265-269.
[32] Miller J L. Ferromagnetism Found in Two-Dimensional Materials[J]. Physics Today, 2017, 70(7): 16-19.
[33] Gong C, Zhang X. Two-Dimensional Magnetic Crystals and Emergent Heterostructure Devices[J]. Science, 2019, 363(6428): eaav4450.
[34] Mogi M, Nakajima T, Ukleev V, et al. Large Anomalous Hall Effect in Topological Insulators with Proximitized Ferromagnetic Insulators[J]. Physical Review Letters, 2019, 123: 016804.
[35] Wang Q, Xu Y F, Lou R, et al. Large Intrinsic Anomalous Hall Effect in Half-Metallic Ferromagnet Co3Sn2S2 with Magnetic Weyl Fermions[J]. Nature Communications, 2018, 9: 3681.
[36] Jiang P H, Li L, Liao Z L, et al. Spin Direction-Controlled Electronic Band Structure in Two-Dimensional Ferromagnetic CrI3[J]. Nano Letters, 2018, 18: 3844-3849.
[37] Zhang J Y, Zhao B, Yao Y G, et al. Quantum Anomalous Hall Effect in Graphene-Based Heterostructure[J]. Scientific Reports, 2015, 5: 10629.
[38] Hou Y S, Kim J W, Wu R Q. Magnetizing Topological Surface States of Bi2Se3 with a CrI3 Monolayer[J]. Science Advances, 2019, 5: eaaw1874.
[39] Wang J, Lian B, Zhang S C. Quantum Anomalous Hall Effect in Magnetic Topological Insulators[J]. Physica Scripta, 2015, T164: 014003.
[40] Xiao D, Jiang J, Shin J H, et al. Realization of the Axion Insulator State in Quantum Anomalous Hall Sandwich Heterostructures[J]. Physical Review Letters, 2018, 120: 056801.
[41] Dzero M, Sun K, Galitski V, et al. Topological Kondo Insulators[J]. Physical Review Letters, 2010, 104(10): 106408.
[42] Zou R L, Zhan F Y, Zheng B B, et al. Intrinsic Quantum Anomalous Hall Phase Induced by Proximity in the van der Waals Heterostructure germanene/Cr2Ge2Te6[J]. Physical Review B, 2020, 101: 161108(R).
[43] Li P. Stanene on a SiC(0001) Surface: a Candidate for Realizing Quantum Anomalous Hall Effect[J]. Physical Chemistry Chemical Physics, 2019, 21: 11150.
[44] Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac Semimetals in Three-Dimensional Solids[J]. Reviews of Modern Physics, 2018, 90: 015001.
[45] Young S M, Zaheer S, Teo J C Y, et al. Dirac Semimetal in Three-Dimensions[J]. Physical Review Letters, 2012, 108: 140405.
[46] Liu Z K, Jiang J, Zhou B, et al, A Stable Three-Dimensional Topological Dirac Semimetal Cd3As2[J]. Nature Materials, 2014, 13: 677-681.
[47] Wang A Q, Xiang P Z, Ye X G, et al. Room-Temperature Manipulation of Spin Texture in a Dirac Semimetal[J]. Physical Review Applied, 2020, 14: 054044.
[48] Yang K Y, Lu Y M, Ran Y. Quantum Hall Effects in a Weyl Semimetal: Possible Application in Pyrochlore Iridates[J]. Physical Review B, 2011, 84: 075129.
[49] Hu J, Xu S Y, Ni N, Mao Z Q. Transport of Topological Semimetals[J]. Annual Review of Materials Research, 2019, 49: 207-252.
[50] Tarruell L, Greif D, Uehlinger T, et al. Creating, Moving and Merging Dirac Points with a Fermi Gas in a Tunable Honeycomb Lattice[J]. Nature, 2012, 483: 302-305.
[51] Lin B C, Wang S, Wang A Q, et al. Electric Control of Fermi-Arc Spin Transport in Individual Topological Semimetal Nanowires[J]. Physical Review Letters, 2020, 124: 116802.
[52] Borisenko S, Gibson Q, Evtushinsky D, et al. Experimental Realization of a Three-Dimensional Dirac Semimetal[J]. Physical Review Letters, 2014, 113(02): 027603.
[53] Neupane M, Xu S Y, Sankar R, et al. Observation of a Three-Dimensional Topological Dirac Semimetal Phase in High-mobility Cd3As2[J]. Nature Communications, 2014, 5(1): 3786.
[54] Weng H, Fang C, Fang Z, et al. Weyl Semimetal Phase in Noncentrosymmetric Transition Metal Monophosphides[J]. Physical Review X, 2014, 5(1): 011029.
[55] Huang S M, Xu S Y, Belopolski I, et al. A Weyl Fermion Semimetal with Surface Fermi-Arcs in the Transition Metal Monopnictide TaAs Class[J]. Nature Communications, 2015, 6: 7373.
[56] Chen X. Experimental Discovery of Weyl Semimetal TaAs[J]. Science China Materials, 2015, 58(9): 675.
[57] Yan B H, Felser C. Topological Materials: Weyl Semimetals[J]. Annual Review of Condensed Matter Physics, 2017, 8: 337-354.
[58] Wan X, Turner A M, Vishwanath A, et al. Topological Semimetal and Fermi-Arc Surface States in the Electronic Structure of Pyrochlore Iridates[J]. Physical Review B, 2011, 83(20): 205101.
[59] Burkov A A, Balents L. Weyl Semimetal in a Topological Insulator Multilayer[J]. Physical Review Letters, 2011, 107(12): 127205.
[60] Fang C, Chen Y, Kee H Y, et al. Topological Nodal Line Semimetals with and without Spin-Orbital Coupling[J]. Physical Review B, 2015, 92(8): 081201.
[61] Fang C, Weng H, Dai X, et al. Topological Nodal Line Semimetals[J]. Chinese Physics B, 2016, 25(11): 117106.
[62] Yan Q, Liu R, Yan Z, et al. Experimental Discovery of Nodal Chains[J]. Nature Physics, 2018, 14(5): 461–464.
[63] Yan Z, Bi R, Shen H, et al. Nodal-Link Semimetals[J]. Physical Review B, 2017, 96(4): 041103.
[64] Zhou Y, Xiong F, Wan X, et al. Hopf-Link Topological Nodal-loop Semimetals[J]. Physical Review B, 2018, 97(15): 155140.
[65] Guan J H, Zhang Y Y, Wang S S, et al. Barrier Tunneling and Loop Polarization in Hopf Semimetals[J]. Physical Review B, 2020, 102(6): 064203.
[66] Wang Y, Hu H, Chen S. Effect of an Incommensurate Potential on Nodal-Link Semimetals[J]. Physical Review B, 2018, 98(20): 205410.
[67] Bi R, Yan Z, Lu L, et al. Nodal-Knot Semimetals[J]. Physical Review B, 2017, 96(20): 201305.
[68] Wang Z J, Sun Y, Chen X Q, et al. Dirac Semimetal and Topological Phase Transitions in A3Bi(A=Na, K, Rb)[J]. Physical Review B, 2012, 85: 195320.
[69] Liu Z K, Zhou B, Zhang Y, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal[J]. Science, 2014, 343: 864.
[70] Wang Z J, Weng H M, Wu Q S, et al. Three-Dimensional Dirac Semimetal and Quantum Transport in Cd3As2[J]. Physical Review B, 2013, 88: 125427.
[71] Liang T, Gibson Q, Ali M N, et al. Ultrahigh Mobility and Giant Magnetoresistance in the Dirac Semimetal Cd3As2[J]. Nature Materials, 2015, 14: 280.
[72] Wang Z J, Chen X Q, Franchini C, et al. Dirac Semimetal and Topological Phase Transitions in A3Bi(A= Na, K, Rb)[J]. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 1-5.
[73] Hübener H, Sentef M A, Giovanini U D, et al. Creating Stable Floquet-Weyl Semimetals by Laser-Driving of 3D Dirac Materials[J]. Nature Communications, 2017, 8: 1-22.
[74] Wang A Q, Ye X G, Yu D P, et al. Topological Semimetal Nanostructures: from Properties to Topotronics[J]. ACS Nano, 2020, 14(4): 3755–3778.
[75] Wang S, Lin B C, Wang A Q, et al. Quantum Transport in Dirac and Weyl Semimetals: A Review[J]. Advances in Physics: X, 2017, 2(3): 518–544.
[76] Hasan M Z, Chang G, Belopolski I, et al. Weyl, Dirac and High-Fold Chiral Fermions in Topological Quantum Matter[J]. Nature Reviews Materials, 2021, 6(9): 784–803.
[77] Kaneta T S, Wakabayashi Y K, Krockenberger Y, et al. High-Mobility Two-Dimensional Carriers from Surface Fermi Arcs in Magnetic Weyl Semimetal Films[J]. NPJ Quantum Materials, 2022, 7: 102.
[78] Lv B Q, Qian T, Ding H. Experimental Perspective on Three-Dimensional Topological Semimetals[J]. Reviews of Modern Physics, 2021, 93(2): 025002.
[79] Wu Y F, Zhang L, Li C Z, et al. Dirac Semimetal Heterostructures: Three-Dimensional Cd3As2 on Two-Dimensional Graphene[J]. Advanced Materials, 2018, 30: 1707574.
[80] Brahlek M, Bansal N, Koirala N, et al. Topological-Metal to Band-Insulator Transition Bi1xIn2Se3 Thin Films[J]. Physical Review Letters, 2012, 109(18): 186403.
[81] Lee C C, Xu S Y, Huang S M, et al. Fermi Surface Interconnectivity and Topology in Weyl Fermion Semimetals TaAs, TaP, NbAs, and NbP[J]. Physical Review B, 2015, 92(23): 235104.
[82] Lv B Q, Xu N, Weng H M, et al. Observation of Weyl Nodes in TaAs[J]. Nature Physics, 2015, 11(9): 724–727.
[83] Yang L X, Liu Z K, Sun Y, et al. Weyl Semimetal Phase in the Non-Centrosymmetric Compound TaAs[J]. Nature Physics, 2015, 11(9): 728-732.
[84] Xu S Y, Alidoust N, Belopolski I, et al. Discovery of a Weyl Fermion State with Fermi Arcs in Niobium Arsenide[J]. Nature Physics, 2015, 11(9): 748-754.
[85] Huang X, Zhao L, Long Y, et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3d Weyl Semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031023.
[86] Zhang C, Xu S Y, Belopolski I, et al. Observation of the Adler-Bell-Jackiw Chiral Anomaly in a Weyl Semimetal[M]. arXiv, 2015
[2015-03-09]. http://arxiv.org/abs/1503.02630. DOI: 10.48550/arXiv.1503.02630.
[87] Bulmash D, Liu C X, Qi X L. Prediction of a Weyl Semimetal in Hg1-x-yCdxMnyTe[J]. Physical Review B, 2014, 89: 081106.
[88] Halász G B, Balents L. Time-reversal Invariant Realization of the Weyl Semimetal Phase[J]. Physical Review B, 2012, 85: 035103.
[89] Murakami S. Phase Transition between the Quantum Spin Hall and Insulator Phases in 3D: Emergence of a Topological Gapless Phase[J]. New Journal of Physics, 2007, 9: 356.
[90] Wan X G, Vishwanath A, Savrasov S Y. Computational Design of Axion Insulators Based on 5d Spinal Compounds[J]. Physical Review Letters, 2012, 108: 146601.
[91] Xu G, Weng H, Wang Z J, et al. Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr2Se4[J]. Physical Review Letters, 2011, 107: 186806.
[92] Liu J, Vanderbilt D. Weyl Semimetals from Noncentrosymmetric Topological Insulators[J]. Physical Review B, 2014, 90: 155316.
[93] Singh B, Sharma A, Lin H, et al. Topological Electronic Structure and Weyl Semimetal in the TlBiSe2 Class of Semiconductors[J]. Physical Review B, 2012, 86: 115208.
[94] Ojanen T. Helical Fermi Arcs and Surface States in Time-Reversal Invariant Weyl Semimetals[J]. Physical Review B, 2013, 87: 245112.
[95] Lu H Z, Zhang S B, Shen S Q. High-Field Magnetoconductivity of Topological Semimetals with Short-Range Potential[J]. Physical Review B-Condensed Matter and Materials Physics, 2015, 92(4): 1-10.
[96] Burkov A A, Leon B. Weyl Semimetal in a Topological Insulator Multi-Layer[J]. Physical Review Letters, 2011, 107(12): 1-4.
[97] Zhang S B, Lu H Z, Shen S Q. Linear Magnetoconductivity in an Intrinsic Topological Weyl Semimetal[J]. New Journal of Physics, 2016, 18(5): 1-14.
[98] Yu X L,Wu J S. Evolution of the Topological Properties of Two-Dimensional Group IVA Materials and Device Design[J]. Physical Chemistry Chemical Physics, 2018, 20: 2296-2307.
[99] He J J, Wu J S, Choy T P, et al. Correlated Spin Currents Generated by Resonant-Crossed Andreev Reflections in Topological Superconductors[J]. Nature Communications, 2014, 5: 3232.
[100]Shi Z S, Wang M J, Wu J S. A Spin Filter Transistor made of Topological Weyl Semimetal[J]. Applied Physics Letters, 2015, 107: 102403.
[101]Wu J S, J. Liu X J. Topological Spin Texture in Quantum Anomalous Hall Insulator[J]. Physical Review Letters, 2014, 113: 136403.
[102]Xie L S, Schoop L M, Seibel E M, et al. A New Form of Ca3P2 with a Ring of Dirac Nodes[J]. APL Materials, 2015, 3: 083602.
[103]Yu R, Weng H M, Fang Z, et al. Topological Node-Line Semimetal and Dirac Semimetal State in Antiperovskite Cu3PdN[J]. Physical Review Letters, 2015, 115: 036807.
[104]Kim Y, Wieder B J, Kane C L, Rappe A M. Dirac Line Nodes in Inversion-Symmetric Crystals[J]. Physical Review Letters, 2015, 115: 036806.
[105]Burkov A A, Hook M D, Balents L. Topological Nodal Semimetals[J]. Physical Review B: Condensed Matter, 2011, 84(23): 4319-4322.
[106]Mullen K, Uchoa B, Glatzhofer D T. Line of Dirac Nodes in Hyperhoneycomb Lattices[J]. Physical Review Letters, 2015, 115(2): 026403.
[107]Chang T R, Chen P J, Bian G, et al. Topological Dirac Surface States and Superconducting Pairing Correlations in PbTaSe2[J]. Physical Review B, 2016, 93(24): 245130.
[108]Kopnin N B, Heikkilä T T, Volovik G E. High-Temperature Surface Superconductivity in Topological Flat-Band Systems[J]. Physical Review B, 2011, 83(22): 220503.
[109]Pang G M, Smidman M, Zhao L X, et al. Nodeless Superconductivity in Noncentrosymmetric PbTaSe2 Single Crystals[J]. Physical Review B, 2016, 93(6): 060506.
[110]Ramamurthy S, Hughes T. Quasi-Topological Electromagnetic Response of Line-Node Semimetals[J]. Physics, 2015, 95(7): 075138.
[111]Weng H M, Liang Y L, Xu Q N, et al. Topological Node-Line Semimetal in Three-Dimensional Graphene Networks[J]. Physical Review B, 2015, 92: 045108.
[112]Chiu C K, Schnyder A P. Classification of Reflection-Symmetry-Protected Topological Semimetals and Nodal Superconductors[J]. Physical Review B, 2014, 90(20): 205136.
[113]Yang S A, Pan H, Zhang F. Dirac and Weyl Superconductors in Three Dimensions[J]. Physical Review Letters, 2014, 113(4): 046401.
[114]Phillips M, Aji V. Tunable Line Node Semimetals[J]. Physical Review B, 2014, 90(11): 115111.
[115]Huh Y, Moon E G, Kim Y B. Long-Range Coulomb Interaction in Nodal-Ring Semimetals[J]. Physical Review B, 2016, 93(3): 035138.
[116]Matusiak M, Cooper J, Kaczorowski D. Thermoelectric Quantum Oscillations in ZrSiS[J]. Nature Communications, 2017, 8: 15219.
[117]Emmanouilidou E, Shen B, Deng X, et al. Magnetotransport Properties of the Single-crystalline Nodal-line Semimetal Candidates CaTX (T=Ag, Cd; X=As,Ge) [J]. Physical Review B, 2017, 95(24): 245113.
[118]Mukherjee S P, Carbotte J P. Transport and Optics at the Node in a Nodal Loop Semimetal[J]. Physical Review B, 2017, 95(21): 214203.
[119]Rui W B, Zhao Y X, Schnyder A P. Topological Transport in Dirac Nodal-line Semimetals[J]. Physical Review B, 2018, 97(16): 161113.
[120]Bian G, Chang T R, Sankar R, et al. Topological Nodal-Line Fermions in Spin-orbit Metal PbTaSe2[J]. Nature Communications, 2016, 7(1): 10556.
[121]Schoop L M, Ali M N, Carola S, et al. Dirac Cone Protected by Non-Symmorphic Symmetry and Three-Dimensional Dirac Line Node in ZrSiS[J]. Nature Communications, 2016, 7: 11696.
[122]Neupane M, Belopolski I, Hosne M M, et al. Observation of Topological Nodal Fermion Semimetal Phase in ZrSiS[J]. Physical Review B, 2016, 93(20): 201104(R).
[123]Hu J, Tang Z, Liu J, et al. Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe[J]. Physical Review Letters, 2016, 117(1): 016602.
[124]Shen D, Kuo C N, Yang T W, et al. Two-Dimensional Superconductivity and Magnetotransport from Topological Surface States in AuSn4 Semimetal[J]. Communications Materials, 2020, 1: 56.
[125]Hosen M M, Dhakal G, Wang B K, et al. Experimental Observation of Drumhead Durface Dtates in SrAs3[J]. Scientific Reports, 2020, 10: 2776.
[126]Guin S N, Xu Q N, Kumar N, et al. 2D-Berry-Curvature-Driven Large Anomalous Hall Effect in Layered Topological Nodal-Line MnAlGe[J]. Advanced Materials, 2021, 33: 2006301.
[127]Bian G, Chang T R, Sankar R, et al. Topological Nodal-Line Fermions in the Non-Centrosymmetric Superconductor Compound PbTaSe2[M]. arXiv, 2015
[2015-05-12]. http:// arxiv.org/abs/1505.03069. DOI: 10.48550/arXiv.1505.03069.
[128]Guan S Y, Chen P J, Chu M W, et al. Superconducting Topological Surface States in the Noncentrosymmetric Bulk Superconductor PbTaSe2[J]. Science Advances, 2016, 2: e160094.
[129]Ren C, Zi H, Long Y J, et al. Topological Surface Superconductivity Induced by Hydrostatic Pressure-Enhanced Antisymmetric Spin-Orbit Coupling in Non-Centrosymmetric Superconductor PbTaSe2[M]. arXiv, 2021
[2021-03-12]. http:// arxiv.org/abs/2103.07144. DOI: 10.48550/arXiv.2103.07144.
[130]Murtaza T, Yang H Y, Feng J J, et al. Cascade of Pressure-Driven Phase Transition in the Topological Nodal-Line Superconductor PbTaSe2[J]. Physical Review B, 2022, 106: L060501.
[131]Lu P C, Chen T, Shao D X, et al. Robust Double Weyl Semimetal Phase in a Nonmagnetic Hexagonal Lattice System[J]. Physical Review B, 2019, 99: 165119.
[132]Yang T, Ding S B, Liu Y, Wu Z M, Zhang G. An Ideal Weyl Nodal Ring with a Large Drumhead Surface State in the Orthorhombic Compound TiS2[J]. Physical Chemistry Chemical Physics, 2022, 24: 8208.
[133]Lampel G. Nuclear Dynamic Polarization by Optical Electronic Saturation and Optical Pumping in Semiconductors[J]. Physical Review Letters, 1968, 20: 491-493.
[134]Ohno Y, Young D K, Beschoton B. Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostructure[J]. Nature, 1999, 402: 790-792.
[135]Oka T, Kitamura S. Floquet Engineering of Quantum Materials[J]. Annual Review of Condensed Matter Physics, 2019, 10: 387-408.
[136]Kitagawa T, Oka T, Brataas A, Fu L, Demler E. Transport Properties of Nonequilibrium Systems under the Application of Light: Photoinduced Quantum Hall Insulators without Landau Levels[J]. Physical Review B, 2011, 84: 235108.
[137]Gómez-León A, Platero G. Floquet-Bloch Theory and Topology in Periodically Driven Lattices[J]. Physical Review Letters, 2013, 110: 200403.
[138]Rudner M S, Lindner N H, Berg E, Levin M. Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems[J]. Physical Review X, 2013, 3: 031005.
[139]Lindner N H, Refael G, Galitski V. Floquet Topological Insulator in Semiconductor Quantum Wells[J]. Nature Physics, 2011, 7: 490.
[140]Fu P H, Duan H J, Wang R Q, Chen H. Phase Transitions in Three-Dimensional Dirac Semimetal Induced by Off-Resonant Circularly Polarized Light[J]. Physics Letters, 2017, A381: 3499.
[141]Li X S, Wang C, Deng M X, et al. Photon-Induced Weyl Half-metal Phase and Spin Filter Effect from Topological Dirac Semimetals[J]. Physical Review Letters, 2019, 123: 206601.
[142]Fu P H, Wang J, Liu J F, Wang R Q. Josephson Signatures of Weyl Node Creation and Annihilation in Irradiated Dirac Semimetals[J]. Physical Review B, 2019, 100: 115414.
[143]Martin R M. Electronic Structure: Basic Theory and Practical Methods[M]. 世界图书出版公司, 2007.
[144]Deng Y, Yu Y, Shi M Z, et al. Quantum Anomalous Hall Effect in Intrinsic Magnetic Topological Insulator MnBi2Te4[J]. Science, 2020, 367: 895-900.
[145]Lang M R, Montazeri M, Onbasli M C, et al. Proximity Induced High-Temperauture Magnetic Order in Topological Insulator-Ferrimagnetic Insulator Heterostructure[J]. Nano Letters, 2014, 14: 3459.
[146]Wei P, Katmis F, Assaf B A, et al. Exchange-Coupling-Induced Symmetry Breaking in Topological Insulators[J]. Physical Review Letters, 2013, 110: 186807.
[147]Zhang J Y, Zhao B, Zhou T, et al. Strong Magnetization and Chern Insulators in Compressed Graphene/CrI3 van der Waals Heterostructures[J]. Physical Review B, 2018, 97(8): 085401.
[148]Burch K S, Mandrus D, Park J G. Magnetism in Two-Dimensional van der Waals Materials[J]. Nature, 2018, 563: 47-52.
[149]Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium[J]. Physical Review Letter, 2009, 102: 236804.
[150]Liu C C, Feng W, Yao Y. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium[J]. Physical Review Letters, 2011, 107: 076802.
[151]Haastrup S, Strange M, Pandey M, et al. The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals[J]. 2D Materials, 2018, 5: 042002.
[152]Gjerding M N, Taghizadeh A, Rasmussen A, et al. The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals[J]. 2D Materials, 2021, 8: 044002.
[153]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review, 1964, 136(3B): B864-B871.
[154]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
[155]Kresse G, Furthmuller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semi-conductors Using a Plane-wave Basis Set[J]. Computational Materials Science, 1996, 6(1): 15-50.
[156]Kresse G, Furthmuller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Physical Review B, 1996, 54: 11169.
[157]Sutcliffe B T. The Born-Oppenheimer Approximation[M]. Springer US, 1992.
[158]Hartree D R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1928, 24(3): 426-437.
[159]Fock V. Näherungsmethode Zur Lösung Des Quantenmechanischen Mehrkörper problems[J]. Zeitschrift fur Physik, 1930, 61(1-2): 126-148.
[160]谢希德, 陆栋. 固体能带理论[M]. 复旦大学出版社, 2007.
[161]Born M, Huang K, Lax M. Dynamical Theory of Crystal Lattices[M]. Clarendon Press, 1954.
[162]Pick R M, Cohen M H, Martin R M. Microscopic Theory of Force Constants in the Adiabatic Approximation[J]. Physical Review B, 1970, 1(1): 910-920.
[163]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1996, 77(18): 3865.
[164]Becke A D. Density-Functional Thermochemistry.I. The Effect of the Exchange-Only Gradient Correction[J]. Journal of Chemical Physics, 1992, 96: 2155-2160.
[165]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation[J]. Physical Review B, 1992, 46(11): 6671-6687.
[166]Liechtenstein A I, Anisimov V I, Zaanen J. Density-Functional Theory and Strong Interactions: Orbital Irdering in Mott-Hubbard Insulators[J]. Physical Review B, 1995, 52: 5467(R).
[167]Mcnellis E R, Meyer J, Reuter K. Azobenzene at Coinage Metal Surfaces: Role of Dispersive van der Waals Interactions[J]. Physical Review B, 2009, 80: 205414.
[168]Mostofi A A, Yates J R, Lee Y S, et al. Wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions[J]. Computer Physics Communications, 2008, 178(9): 685-699.
[169]Wannier G H. The Structure of Electronic Excitation Levels in Insulating Crystals[J]. Physical Review, 1937, 52(3): 191.
[170]Marzari N, Vanderbilt D. Maximally Localized Generalized Wannier Functions for Composite Energy Bands[J]. Physical Review B, 1997, 56(20): 12847.
[171]Souza I, Marzari N, Vanderbilt D. Maximally Localized Wannier Functions for Entangled Energy Bands[J]. Physical Review B, 2001, 65(3): 035109.
[172]Marzari N, Mostofi A A, Yates J R, et al. Maximally Localized Wannier Functions: Theory and Applications[J]. Reviews of Modern Physics, 2012 84(4): 1419.
[173]Wu Q, Zhang S, Song H F, et al. Wannier Tools: An Open-Source Software Package for Novel Topological Materials[J]. Computer Physics Communications, 2018, 224: 405-416.
[174]Clark S J, Segall M D, Pickard C J, et al. First Principles Methods Using CASTEP [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220: 567-570.
[175]Graziano G, Klimes J, Fernandez A F, Chaelides A M. Improved Description of Soft Layered Materials with van der Waals Density Functional Theory[J]. Journal of Physics: Condensed Matter, 2012, 24: 424216.
[176]Sancho M P L, Sancho J M L, Rubio J. Quick Iterative Scheme for the Calculation of Transfer Matrices: Application to Mo (100)[J]. Journal of Physics F: Metal Physics, 1984, 14: 1205.
[177]Strong H M, Hanneman R E. Crystallization of Diamond and Graphite[J]. Journal of Chemical Physics, 1967, 46(9): 3668-3676.
[178]Zhang W, Oganov A R, Goncharov A F, et al. Unexpected Stable Stoichiometries of Sodium Chlorides[J]. Science, 2013, 342(6165): 1502.
[179]Duan D, Huang X, Tian F, et al. Pressure-Induced Decomposition of Solid Hydrogen Sulfide[J]. Physical Review B, 2015, 91: 180502(R).
[180]Kostrzewa M, Szczesniak K M, Durajski A P, Szczesniak R. From LaH10 to Room-Temperature Superconductors[J]. Scientific Reports, 2020, 10: 1592.
[181]Mao W L, Mao H K. Hydrogen Storage in Molecular Compounds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3): 708-710.
[182]Sun J P. Topological Nodal Line Semimetal in Non-Centrosymmetric PbTaS2[J]. Chinese Physics Letters, 2017, 34: 077101.
[183]Friend R H, Yoffe A D. Electronic Properties of Intercalation Complexes of the Transition Metal Dichalcogenides[J]. Advances in Physics, 1987, 36: 1-94.
[184]Aretouli K E, Tsipas P, Tsoutsou D, et al. Two-Dimensional Semiconductor HfSe2 and MoSe2/HfSe2 van der Waals Heterostructures by MolecularBeam Epitaxy[J]. Applied Physics Letters, 2015, 106: 143105.
[185]Jiang H. Structural and Electronic Properties of ZrX2 and HfX2 (X= S and Se) from First Principles Calculations[J]. The Journal of Chemical Physics, 2011, 134: 204705.
[186]Li Y, Jin X, Cui T, et al. Structural Stability and Electronic Property in K2S under Pressure[J]. RSC Advances, 2017, 7(12): 7424-7430.
[187]Togo A, Oba F, Tanaka I. First-Principles Calculations of the Ferroelastic Transition between Rutile-type and CaCl2-type SiO2 at High Pressures[J]. Physical Review B, 2008, 78(13): 134106.
[188]Wu Z J, Zhao E J, Xiang H P, et al. Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles[J]. Physical Review B, 2007, 76 : 054115.
[189]Enge V. A Time-dependent Interpretation of the Absorption Spectrum of CH3ONO [J]. The Journal of Chemical Physics, 1990, 92: 1.
[190]Eckardt A. Colloquium: Atomic Quantum Gases in Periodically Driven Optical Lattices[J]. Review of Modern Physics, 2017, 89: 011004.
[191]Rudner M S, Lindner N H. Band Structure Engineering and Non-Equilibrium Dynamics in Floquet Topological Insulators[J]. Nature Reviews Physics, 2020, 2: 229.
[192]Chan C K, Oh Y T, Han J H, Lee P A. Type-II Weyl Cone Transitions in Driven Semimetals[J]. Physical Review B, 2016, 94: 121106(R).
[193]Narayan A. Tunable Point Nodes from Line-Node Semimetals via Application of Light[J]. Physical Review B, 2016, 94: 041409(R).
[194]Yan Z, Wang Z. Tunable Weyl points in Periodically Driven Nodal Line Semimetals[J]. Physical Review Letters, 2016, 117: 087402.
[195]Taguchi K, Xu D H, Yamakage A, Law K T. Photovoltaic Anomalous Hall Effect in Line-Node Semimetals[J]. Physical Review B, 2016, 94: 155206.
[196]Li L, Yap H H, Ara′ujo M A N, Gong J. Engineering Topological Phases with a Three-Dimensional Nodal-Loop Semimetal[J]. Physical Review B, 2017, 96: 235424.
[197]Bian G, Chang T R, Zheng H, et al. Drumhead Surface States and Topological Nodal-line Fermions in TlTaSe2[J]. Physical Review B, 2016, 93: 121113(R).
[198]薛定宇. 基于MATLAB/Simulink的系统仿真技术与应用[M]. 北京:清华大学出版社, 2002.
[199]Datta S. Electronic Transport in Mesoscopic Systems[M]. Cambridge: Cambridge University Press, 1997.
[200]Sancho M P L, Sancho J M L, Rubio J. Highly Convergent Schemes for the Calculation of Bulk and Surface Green Functions[J]. Journal of Physics F: Metal Physics, 1985, 15: 851.
[201]Fisher D S, Lee P A. Relation between Conductivity and Transmission Matrix[J]. Physical Review B, 1981, 23: 6851.
[202]Biderang M, Leonhardt A, Raghuvanshi N, Schnyder A P, Akbari A. Drumhead Surface States and Their Signatures in Quasiparticle Scattering Interference[J]. Physical Review B, 2018, 98: 075115.
[203]Hübener H, Sentef M A, De Giovannini U, Kemper A F, Rubio A. Creating Stable Floquet–Weyl Semimetals by Laser-Driving of 3D Dirac Materials[J]. Nature Communications, 2017, 8: 13940.
[204]Wang R,Wang B, Shen R, Sheng L, Xing D Y. Floquet Weyl Semimetal Induced by Off-Resonant Light[J]. Europhysics Letters, 2014, 105: 17004.
[205]Luo L, Cheng D, Song B Q, et al. A Light-Induced Phononic Symmetry Switch and Giant Dissipationless Topological Photocurrent in ZrTe5[J]. Nature Materials, 2021, 20: 329.
[206]Konstantinova T, Wu L, Yin W G, et al. Photo Induced Dirac Semimetal in ZrTe5[J]. NPJ Quantum Materials, 2020, 5: 80.
[207]McIver J W, Schulte B, Stein F U, et al. Light-Induced Anomalous Hall Effect in Graphene[J]. Nature Physics, 2020, 16: 38.
[208]Wang Y H, Steinberg H, Jarillo H P, Gedik N. Observation of Floquet–Bloch States on the Surface of a Topological Insulator[J]. Science, 2013, 342: 453.
[209]Bansil A, Lin H, Das T. Colloquium: Topological Band Theory[J]. Review of Modern Physics, 2016, 88: 0121004.
[210]Yi H M, Wang Z J, Chen C Y, et al. Evidence of Topological Surface State in Three-Dimensional Dirac Semimetal Cd3As2[J]. Scientific Reports, 2014, 4: 6106.
[211]Xu S Y, Liu C, Kushwaha S K, et al. Observation of Fermi Arc Surface States in a Topological Metal[J]. Science, 2015, 347: 294.
[212]Zhang Y, Liu Z L, Zhou B, et al. Molecular Beam Epitaxial Growth of a Three-Dimensional Topological Dirac Semimetal Na3Bi[J]. Applied Physics Letters, 2014, 105: 031901.
[213]Wen J, Guo H, Yan C H, et al. Synthesis of Semimetal A3Bi (A = Na, K) Thin Films by Molecular Beam Epitaxy[J]. Applied Surface Science, 2015, 327: 213.
[214]Gyenis A, Inoue H, Jeon S, et al. Imaging Electronic States on Topological Semimetals Using Scanning Tunneling Microscopy[J]. New Journal of Physics, 2016, 18: 105003.
[215]Cano J, Bradlyn B, Wang Z J, et al. Chiral Anomaly Factory: Creating Weyl Fermions with a Magnetic Field[J]. Physical Review B, 2017, 95: 161306(R).
[216]Li C Z, Wang A Q, Li C, et al. Fermi-Arc Supercurrent Oscillations in Dirac Semimetal Josephson Junctions[J]. Nature Communications, 2020, 11: 1150.
[217]Huang C, Zhou B T, Zhang H Q, et al. Proximity-Induced Surface Superconductivity in Dirac Semimetal Cd3As2[J]. Nature Communications, 2019, 10: 2217.
[218]Wang A Q, Li C Z, Li C, et al. 4π-Periodic Supercurrent from Surface States in Cd3As2 Nanowire-Based Josephson Junctions[J]. Physical Review Letters, 2018, 121: 237701.
[219]Li C Z, Li C, Wang L X, et al. Bulk and Surface States Carried Supercurrent in Ballistic Nb-Dirac Semimetal Cd3As2 Nanowire-Nb Junctions[J]. Physical Reviw B, 2018, 97: 115446.
[220]Wang L X, Li C Z, Yu D P, Liao Z M. Aharonov-Bohm Oscillations in Dirac Semimetal Cd3As2 Nanowires[J]. Nature Communications, 2016, 7: 10769.
[221]Lin B C, Wang S, Wang Li L, et al. Gate-Tuned Aharonov-Bohm Interference of Surface States in a Quasiballistic Dirac Semimetal Nanowire[J]. Physical Review B, 2017, 95: 235436.
[222]Li C Z, Wang A Q, Li C, et al. Reducing Electronic Transport Dimension to Topological Hinge States by Increasing Geometry Size of Dirac Semimetal Josephson Junctions[J]. Physical Review Letters, 2020, 124: 156601.
[223]Gorbar E V, Miransky V A, Shovkovy I A, Sukhachov P O. Dirac Semimetals A3Bi (A = Na, K, Rb) as Z2 Weyl Semimetal[J]. Physical Review B, 2015, 91: 12101(R).
[224]Gorbar E V, Miransky V A, Shovkovy I A, Sukhachov P O. Surface Fermi Arcs in Z2 Weyl Semimetals A3Bi (A = Na, K, Rb)[J]. Physical Review B, 2015, 91: 235138.
[225]Xiong J, Kuahwaha S K, Liang T, et al. Evidence for the Chiral Anomaly in the Dirac Semimetal Na₃Bi[J]. Science, 2015, 350(6259): 413-416.
[226]Jeon S J, Zhou B B, Gyenis A, et al. Landau Quantization and Quasiparticle Interference in the Three-Dimensional Dirac Semimetal Cd3As2[J]. Nature Materials, 2014, 13: 851.
[227]Wang C M, Sun H P, Lu H Z, Xie X C. 3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals[J]. Physical Review Letters, 2017, 119: 36806.
修改评论