题名 | THE GENESIS OF THE OROGENIC GOLD DEPOSITS IN THE LIAODONG PENINSULA, NORTH CHINA CRATON |
姓名 | |
姓名拼音 | LIU Shuaijie
|
学号 | 11950001
|
学位类型 | 博士
|
学位专业 | 地球化学
|
导师 | |
导师单位 | 地球与空间科学系
|
外机构导师 | 赵国春
|
外机构导师单位 | 香港大学
|
论文答辩日期 | 2023-07-06
|
论文提交日期 | 2023-09-05
|
学位授予单位 | 香港大学
|
学位授予地点 | 香港
|
摘要 | The genesis of the orogenic gold deposits in the Liaodong Peninsula, North China Craton (NCC), is essential for gold exploration in this area and yet remains disputed. Though most researchers link gold mineralization with magmatism and/or metasomatized mantle beneath the NCC, this study here, instead, considers that metamorphic devolatilization of the Paleoproterozoic basement rocks could account for the formation of the Mesozoic orogenic gold deposits in the Liaodong Peninsula, NCC. The representative gold deposits in the Liaodong Peninsula, i.e., Baiyun, Wulong and Xinfang gold deposits, have structurally-controlled orebodies. A systematic study on geological profiles, temperatures, salinities, and O isotopes of the ore-forming fluids at the Wulong gold deposit shows that the lodes have no spatial variations over a 600 m vertical depth interval, which is different from magmatic hydrothermal systems. Fluid inclusion studies have shown that the Wulong and Xinfang gold deposits have middle temperature (200–350 ° C), low-salinity (1–15 wt% NaCl eqv.), carbonicaqueous ore-forming fluids, similar to those of orogenic gold deposits. A combined Fe-S isotopic study at the Baiyun gold deposit shows the sulfur was probably from the pyritic volcanic-sedimentary sequences of the Paleoproterozoic Liaohe Group, rather than from magmas; the calculated δ56Fe values of the ore-forming fluids (-0.78 – -0.37‰) could be modelled in a metamorphic devolatilization model with Fe-species (pyrite & magnetite) of the Paleoproterozoic Liaohe Group as sources. Li isotopic study was conducted at Baiyun to explore the behaviour of Li isotopes during the high-T metasomatism of metapelites. This study reveals that similar high-T metasomatism of metasedimentary rocks in mé lange zones could result in low δ7Li sediment inputs. Mixing such low δ7Li sediment inputs with high δ7Li altered oceanic crusts could account for MORB-like Li isotopic signature of arc lavas. Sr isotopes at the Wulong gold deposit identify metabasalts from the Paleoproterozoic Liaohe Group as potential sources. Additional Li and its isotopic modelling further suggests that metamorphic devolatilization of metabasalts from the Paleoproterozoic Liaohe Group (with chain silicates Ch, phyllosilicates Ph, and quartz Qtz as endmembers; Ch, Li ≈ 5 ppm, δ7Li ≈ 8‰; Ph, Li ≈ 63 ppm, δ7Li ≈ -1‰; Qtz, Li ≈ 10 ppm, δ7Li ≈ 30‰) could account for the Li concentrations (5–41 ppm) and δ7Li value of the ore-forming fluids (21.4 ‰) of the Wulong gold deposit. The S isotopic characteristics of sulfides at the Xinfang gold deposit not only record a heterogeneous source including magmatic or gneissic sulfur but also record inter-mineral isotope fractionation. The initial 87Sr/86Sr values of pyrite (0.713480–0.729031) indicate a radiogenic crustal origin for the sources. The metamorphic devolatilization of the underlying basement resulted in the formation of the Xinfang gold deposit. This study integrates geological evidence with multiple isotopic systems to prove that the orogenic gold deposits in the Liaodong Peninsula were formed through metamorphic devolatilization of the Paleoproterozoic basement in the Mesozoic. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2019
|
学位授予年份 | 2023-12
|
参考文献列表 | References103GT, 2012. The exploration and study report of Baiyun gold deposit at the Fengcheng city, Liaoning Province. Unpublished report, Fengcheng.Agostini, S., Ryan, J.G., Tonarini, S., Innocenti, F., 2008. Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth Planet. Sci. Lett. 272, 139-147.Audétat, A., Günther, D., Heinrich, C.A., 2000. Causes for Large-Scale Metal Zonation around Mineralized Plutons: Fluid Inclusion LA-ICP-MS Evidence from the Mole Granite, Australia. Econ. Geol. 95, 1563-1581.Audétat, A., Zhang, D., 2019. Abundances of S, Ga, Ge, Cd, In, Tl and 32 other major to trace elements in high-temperature (350–700 °C) magmatic-hydrothermal fluids. Ore Geol. Rev. 109, 630-642.Bai, Y., Zhu, M., Zhang, L., Huang, K., Li, W., Gao, B., 2019. Auriferous pyrite Re–Os geochronology and He-Ar isotopic compositions of the Jinchangyu Au deposit in the northern margin of the North China Craton. Ore Geol. Rev. 111, 102948.Bao, C., Chen, B., Liu, C., Zheng, J., Liu, S., 2021. Lithium isotopic systematics of ore-forming fluid in the orogenic gold deposits, Jiaodong Peninsula (East China): Implications for ore-forming mechanism. Ore Geol. Rev. 136, 104254.Beard, B.L., Johnson, C.M., Von Damm, K.L., Poulson, R.L., 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31, 629-632.Beaudoin, G., Chiaradia, M., 2016. Fluid mixing in orogenic gold deposits: Evidence from the H-O-Sr isotope composition of the Val-d'Or vein field (Abitibi, Canada). Chem. Geol. 437, 7-18.Bebout, G.E., 1991. Field-Based Evidence for Devolatilization in Subduction Zones: Implications for Arc Magmatism. Science 251, 413-416.Bebout, G.E., Barton, M.D., 1989. Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology 17, 976-980.Bebout, G.E., Barton, M.D., 1993. Metasomatism during subduction: products and possible paths in the Catalina Schist, California. Chem. Geol. 108, 61-92.Bebout, G.E., Ryan, J.G., Leeman, W.P., 1993. B-Be systematics in subduction-related metamorphic rocks: Characterization of the subducted component. Geochim. Cosmochim. Acta 57, 2227-2237.Berndt, M.E., Seyfried Jr., W.E., Beck, J.W., 1988. Hydrothermal alteration processes at midocean ridges: Experimental and theoretical constraints from Ca and Sr exchange reactions and Sr isotopic ratios. J. Geophys. Res. Solid Earth 93, 4573-4583.BGMRLP, 1989. Regional geology of Liaoning Province. Geological Publishing House, Beijing, China, 856 pp.BGMRSP, 1991. Regional Geology of Shandong Province. Geological Publishing House, Beijing, China, 595 pp.Bierlein, F.P., Crowe, D.E., 2000. Phanerozoic Orogenic Lode Gold Deposits. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000. Society of Economic Geologists, pp. 103-139.Bierlein, F.P., Groves, D.I., Cawood, P.A., 2009. Metallogeny of accretionary orogens—the connection between lithospheric processes and metal endowment. Ore Geol. Rev. 36, 282-292.Bierlein, F.P., Groves, D.I., Goldfarb, R.J., Dubé, B., 2006. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Mineral. Depos. 40, 874.Bierlein, F.P., Maher, S., 2001. Orogenic disseminated gold in phanerozoic fold belts—examples from Victoria, Australia and elsewhere. Ore Geol. Rev. 18, 113-148.Bin, G., Jin, X., Zhang, S., 1990. Bedded pyrite in Li'eryu formation of Early Proterozoic Northern Liaohe Group from Eastern Liaoning. Liaoning Geology, 33-43 (in Chinese with English abstract).Blanchard, M., Poitrasson, F., Méheut, M., Lazzeri, M., Mauri, F., Balan, E., 2009. Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): A first-principles density functional theory study. Geochim. Cosmochim. Acta 73, 6565-6578.Bodnar, R., Lecumberri-Sanchez, P., Moncada, D., M, S.-M., 2014. Fluid Inclusions in Hydrothermal Ore Deposits, pp. 119-142.Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 57, 683-684.Bons, P.D., 2001. The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336, 1-17.Bouman, C., Elliott, T., Vroon, P.Z., 2004. Lithium inputs to subduction zones. Chem. Geol. 212, 59-79.Brant, C., Coogan, L.A., Gillis, K.M., Seyfried, W.E., Pester, N.J., Spence, J., 2012. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochim. Cosmochim. Acta 96, 272-293.Breiter, K., Ďurišová, J., Dosbaba, M., 2017. Quartz chemistry – A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Ore Geol. Rev. 90, 25-35.Caciagli, N., Brenan, J.M., McDonough, W.F., Phinney, D., 2011. Mineral–fluid partitioning of lithium and implications for slab–mantle interaction. Chem. Geol. 280, 384-398.Canfield, D.E., 1989. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619-632.Canfield, D.E., Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382, 127-132.Cao, H., Vervoort, J., Wang, D., Li, G., Neill, O., 2016. Triassic monazite ages and its geological significance of garnet-mica schist in Fenzishan Group, Jiaobei Massif. Acta Petrol. Sin. 32, 3800-3816 (in Chinese with English abstract).Cassidy, K.F., Groves, D.I., McNaughton, N.J., 1998. Late-Archean granitoid-hosted lode-gold deposits, Yilgarn Craton, Western Australia: Deposit characteristics, crustal architecture and implications for ore genesis. Ore Geol. Rev. 13, 65-102.Chan, L.-H., Alt, J.C., Teagle, D.A., 2002a. Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater–basalt exchange at ODP Sites 504B and 896A. Earth Planet. Sci. Lett. 201, 187-201.Chan, L.H., Edmond, J.M., Thompson, G., Gillis, K., 1992. Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet. Sci. Lett. 108, 151-160.Chan, L.H., Leeman, W.P., You, C.F., 2002b. Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem. Geol. 182, 293-300.Chen, B., Gu, H.-o., Chen, Y., Sun, K., Chen, W., 2018. Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: Implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization. Chem. Geol. 483, 372-384.Chen, B., Huang, C., Zhao, H., 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chem. Geol. 551, 119769.Cheng, X., Xu, J., Yang, F., Zhang, G., Zhang, H., Bian, C., Xue, Q., 2020. New constraints on the genesis and geodynamic setting of the Wulong gold deposit, Liaodong Peninsula, NE China: Evidence from geology, geochemistry, fluid inclusions and C–H–O–S–Pb isotopes. Canadian Journal of Earth Sciences 57, 307-330.Chi, G., Diamond, L.W., Lu, H., Lai, J., Chu, H., 2021. Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion. Minerals 11, 7.Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 77, 3057-3067.Collins, P.L.F., 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol. 74, 1435-1444.Colvine, A.C., A., F.J., Heather, K.B., Marmont, S., Smith, P.M., Troop, D.G., 1988. Archean lode gold deposits in Ontario. Ontario Geological Survey Miscellaneous Paper 139. Ontario Ministry of Northern Development and Mines, 136 pp.Condie, K.C., Aster, R.C., 2010. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Res. 180, 227-236.Craddock, P.R., Dauphas, N., 2011. Iron Isotopic Compositions of Geological Reference Materials and Chondrites. Geostand. Geoanal. Res. 35, 101-123.Craw, D., MacKenzie, D., 2016. Macraes orogenic gold deposit (New Zealand): origin and development of a world class gold mine. Springer Briefs in World Mineral Deposits, 1. Springer, Switzerland, 127 pp.Cui, S., Li, J., 1983. On the Indosinian movement of China's Peri-Pacific tectonic belt. Acta Geol. Sin., 53-64 (in Chinese with English abstract).Cui, W., Guo, J., Huang, G., Wang, Z., Liu, Y., Yang, J., 2022. Gold mobilization during prograde metamorphism of clastic sedimentary rocks: An example from the Liaohe Group in the Jiao–Liao–Ji Belt, North China Craton. Ore Geol. Rev. 140, 104624.Dauphas, N., John, S.G., Rouxel, O., 2017. Iron Isotope Systematics. Rev. Mineral. Geochem. 82, 415-510.de Ronde, C.E.J., Kamo, S., Davis, D.W., de Wit, M.J., Spooner, E.T.C., 1991. Field, geochemical and U-Pb isotopic constraints from hypabyssal felsic intrusions within the Barberton greenstone belt, South Africa: Implications for tectonics and the timing of gold mineralization. Precambrian Res. 49, 261-280.Deng, J., Wang, C., Bagas, L., Santosh, M., Yao, E., 2018. Crustal architecture and metallogenesis in the south-eastern North China Craton. Earth Sci. Rev. 182, 251-272.Deng, J., Wang, Q., 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 36, 219-274.Deng, J., Wang, Q., Santosh, M., Liu, X., Liang, Y., Yang, L., Zhao, R., Yang, L., 2020. Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold province, eastern China. Mineral. Depos. 55, 257-274.Deng, J., Yang, L.-Q., Li, R.-H., Groves, D.I., Santosh, M., Wang, Z.-L., Sai, S.-X., Wang, S.-R., 2019. Regional structural control on the distribution of world-class gold deposits: An overview from the Giant Jiaodong Gold Province, China. Geol. J. 54, 378-391.Deveaud, S., Millot, R., Villaros, A., 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chem. Geol. 411, 97-111.Dong, S., Zhang, Y., Li, H., Shi, W., Xue, H., Li, J., Huang, S., Wang, Y., 2019a. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia—Commemorating 90th years of the “Yanshan Orogeny”. Sci. China Earth Sci. 49, 913-938 (in Chinese with English abstract).Dong, Y., Bi, J.-h., Xing, D.-h., Ge, W.-c., Yang, H., Hao, Y.-j., Ji, Z., Jing, Y., 2019b. Geochronology and geochemistry of Liaohe Group and Liaoji granitoid in the Jiao-Liao-Ji Belt, North China Craton: Implications for petrogenesis and tectonic evolution. Precambrian Res. 332, 105399.Duan, X., Zeng, Q., Yang, J., Liu, J., Wang, Y., Zhou, L., 2014. Geochronology, geochemistry and Hf isotope of Late Triassic magmatic rocks of Qingchengzi district in Liaodong peninsula, Northeast China. J. Asian Earth Sci. 91, 107-124.Elmer, F.L., White, R.W., Powell, R., 2006. Devolatilization of metabasic rocks during greenschist–amphibolite facies metamorphism. J. Metamorph. Geol. 24, 497-513.Evans, K.A., Phillips, G.N., Powell, R., 2006. Rock-Buffering of Auriferous Fluids in Altered Rocks Associated with the Golden Mile-Style Mineralization, Kalgoorlie Gold Field, Western Australia. Econ. Geol. 101, 805-817.Fan, H.R., Zhai, M.G., Xie, Y.H., Yang, J.H., 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineral. Depos. 38, 739-750.Fan, J.-J., Tang, G.-J., Wei, G.-J., Wang, H., Xu, Y.-G., Wang, Q., Zhou, J.-S., Zhang, Z.-Y., Huang, T.-Y., Wang, Z.-L., 2020. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos 352-353, 105236.Faure, G., Powell, J.L., 1972. Strontium isotope geology. Monograph Series of Theoretical and Experimental Studies. Springer-Verlag, Springer-Verlag Berlin . Heidelberg· New York, 188 pp.Faure, M., Lin, W., Monié, P., Bruguier, O., 2004. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China). Terra Nova 16, 75-80.Feng, H., Shen, P., Zhu, R., Li, C., Ma, G., Pan, H., 2019. Geology and He-Ar-S-Pb isotope constraints on the genesis of the Sidaogou gold deposit in Liaodong Peninsula, northeastern North China Craton. Ore Geol. Rev. 113, 103080.Feng, H., Shen, P., Zhu, R., Zi, J.-W., Groves, D.I., Li, C., Wu, Y., Ma, G., Li, T., 2021. Precise ages of gold mineralization and pre-gold hydrothermal activity in the Baiyun gold deposit, northeastern China: in situ U–Pb dating of hydrothermal xenotime and rutile. Mineral. Depos. 57, 1001–1022.Frimmel, H.E., 2008. Earth's continental crustal gold endowment. Earth Planet. Sci. Lett. 267, 45-55.Frost, B.R., Frost, C.D., 2014. Essentials of igneous and metamorphic petrology. Cambridge University Press, 303 pp.Fyfe, W., Price, N., Thompson, A., 1978. Fluids in the Earth’s Crust: Their Significance in Metamorphic, Tectonic and Chemical Transport Processes. Developments in Geochemistry, 1. Elsevier, Amsterdam, 383 pp.Garofalo, P.S., Fricker, M.B., Günther, D., Bersani, D., Paolo Lottici, P., Garofalo, P.S., Ridley, J.R., 2014. Physical-chemical properties and metal budget of Au-transporting hydrothermal fluids in orogenic deposits, Gold-Transporting Hydrothermal Fluids in the Earth’s Crust. Geological Society of London, pp. 71-102.Gebre-Mariam, M., Hagemann, S.G., Groves, D.I., 1995. A classification scheme for epigenetic Archaean lode-gold deposits. Mineral. Depos. 30, 408-410.Goldfarb, R., Baker, T., Dube, B., Groves, D.I., Hart, C.J., Gosselin, P., 2005. Distribution, character and genesis of gold deposits in metamorphic terranes. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), One Hundredth Anniversary Volume Society of Economic Geologists, pp. 407-450.Goldfarb, R.J., Ayuso, R., Miller, M.L., Ebert, S.W., Marsh, E.E., Petsel, S.A., Miller, L.D., Bradley, D., Johnson, C., McClelland, W., 2004. The Late Cretaceous Donlin Creek Gold Deposit, Southwestern Alaska: Controls on Epizonal Ore Formation. Econ. Geol. 99, 643-671.Goldfarb, R.J., Groves, D.I., 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 233, 2-26.Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001. Orogenic gold and geologic time: a global synthesis. Ore Geol. Rev. 18, 1-75.Goldfarb, R.J., Hart, C., David, G., Groves, D., 2007. East Asian Gold: Deciphering the Anomaly of Phanerozoic Gold in Precambrian Cratons. Econ. Geol. 102, 341-345.Goldfarb, R.J., Pitcairn, I., 2023. Orogenic gold: is a genetic association with magmatism realistic? Mineral. Depos. 58, 5-3.Goldfarb, R.J., Santosh, M., 2014. The dilemma of the Jiaodong gold deposits: are they unique? Geosci. Front. 5, 139-153.Goodwin, A.M., 1991. Precambrian geology: the dynamic evolution of the continental crust. Elsevier, 666 pp.Götze, J., 2009. Chemistry, textures and physical properties of quartz - geological interpretation and technical application. Mineral Mag 73, 645-671.Grant, J.A., 1986. The isocon diagram; a simple solution to Gresens' equation for metasomatic alteration. Econ. Geol. 81, 1976-1982.Gregory, R.T., Criss, R.E., Taylor Jr, H.P., 1989. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations. Chem. Geol. 75, 1-42.Griffin, W., Andi, Z., O'reilly, S., Ryan, C., 1998. Phanerozoic evolution of the lithosphere beneath the Sino‐Korean craton. In: Flower, M.F.J., Chung, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle dynamics and plate interactions in East Asia. Geodynamics Series, pp. 107-126.Groves, D., 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineral. Depos. 28, 366-374.Groves, D.I., Foster, R.P., 1991. Archaean lode gold deposits. In: Foster, R.P. (Ed.), Gold metallogeny and exploration. Springer US, Boston, MA, pp. 63-103.Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S., Robert, F., 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 13, 7-27.Groves, D.I., Santosh, M., 2016. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geosci. Front. 7, 409-417.Groves, D.I., Santosh, M., Deng, J., Wang, Q., Yang, L., Zhang, L., 2020. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineral. Depos. 55, 275-292.Gu, C., Zhu, G., Zhai, M., Lin, S., Song, L., Liu, B.J.S.C.E.S., 2016. Features and origin time of Mesozoic strike-slip structures in the Yilan-Yitong Fault Zone. Sci. China Earth Sci. 59, 2389-2410.Guan, G., Jin, C., 1983. The genesis of the Baiyun gold deposit. Geology and Prospecting 12-20 (in Chinese).Guo, D., Wei, J., Zhang, K., Tan, W., Tan, J., Li, Y., 2005. The isotope geochemical characterisitcs and ore-forming time of Zhuanghe gold deposit, eastern Liaoning. Acta Geologica Sinica 79, 671-678.Halama, R., John, T., Herms, P., Hauff, F., Schenk, V., 2011. A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab. Chem. Geol. 281, 151-166.Hao, L., Zhao, X., Zhao, Y., 2017. Stable Isotope Characteristics and Ore Genesis of the Baiyun Gold deposits, Liaoning Province. J. Jilin Univ. (Earth Sci. Ed.) 47, 442-451 (in Chinese with English abstract).Hart, C.J., Goldfarb, R.J., Qiu, Y., Snee, L., Miller, L.D., Miller, M.L., 2002. Gold deposits of the northern margin of the North China Craton: multiple late Paleozoic–Mesozoic mineralizing events. Mineral. Depos. 37, 326-351.Hawkesworth, C., Cawood, P., Dhuime, B., 2013. Continental growth and the crustal record. Tectonophysics 609, 651-660.He, Z., Zhang, X., Deng, X., Hu, H., Li, Y., Yu, H., Archer, C., Li, J., Huang, F., 2020. The behavior of Fe and S isotopes in porphyry copper systems: Constraints from the Tongshankou Cu-Mo deposit, Eastern China. Geochim. Cosmochim. Acta 270, 61-83.Heimann, A., Beard, B.L., Johnson, C.M., 2008. The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochim. Cosmochim. Acta 72, 4379-4396.Hodgson, C.J., 1989. The structure of shear-related, vein-type gold deposits: A review. Ore Geol. Rev. 4, 231-273.Hoefs, J., 2018. Stable isotope geochemistry, 201. Springer, 437 pp.Hu, F.F., Fan, H.R., Jiang, X.H., Li, X.C., Yang, K.F., Mernagh, T., 2013. Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China. Geofluids 13, 528-541.Icenhower, J., London, D., 1995. An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am. Mineral. 80, 1229-1251.Jin, J., Gao, B., Zhang, H., 1998. Study on feasibility of deep development in Xin-Fang GoldMine of Liaoning Province. Gold 19, 23-27 (in Chinese with English abstract).Kawahata, H., Nohara, M., Ishizuka, H., Hasebe, S., Chiba, H., 2001. Sr isotope geochemistry and hydrothermal alteration of the Oman ophiolite. J. Geophys. Res. 106, 11083-11099.Kerrich, R., Cassidy, K.F., 1994. Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation—Archean to present: A review. Ore Geol. Rev. 9, 263-310.Kerrich, R., Wyman, D., 1990. Geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes. Geology 18, 882-885.King, R.L., Bebout, G.E., Moriguti, T., Nakamura, E., 2006. Elemental mixing systematics and Sr–Nd isotope geochemistry of mélange formation: Obstacles to identification of fluid sources to arc volcanics. Earth Planet. Sci. Lett. 246, 288-304.Kusky, T.M., Windley, B.F., Zhai, M.-G., 2007. Tectonic evolution of the North China Block: from orogen to craton to orogen. Geol. Soc. Spec. Publ. 280, 1-34.Large, R., Thomas, H., Craw, D., Henne, A., Henderson, S., 2012. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. New Zealand J. Geol. Geophys. 55, 137-149.Leeman, W.P., Tonarini, S., Chan, L.H., Borg, L.E., 2004. Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem. Geol. 212, 101-124.Li, C.-F., Li, X.-H., Li, Q.-L., Guo, J.-H., Li, X.-H., Yang, Y.-H., 2012a. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Anal. Chim. Acta 727, 54-60.Li, G., Cao, H., Wang, D., Xu, C., 2016a. Deformation and metamorphism of Triassic fenzishan group and Jingshan group in the Jiaobei massif: Evidence from rutile U-Pb geochronology. Acta Geol. Sin. 90, 3246-3258 (in Chinese with English abstract).Li, J.-W., Vasconcelos, P., Zhou, M.-F., Zhao, X.-F., Ma, C.-Q., 2006a. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: implications for regional mineralization and geodynamic setting. Econ. Geol. 101, 1023-1038.Li, J., Huang, X.-L., Wei, G.-J., Liu, Y., Ma, J.-L., Han, L., He, P.-L., 2018a. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites. Geochim. Cosmochim. Acta 240, 64-79.Li, J., Tang, S., Zhu, X., Pan, C., 2016b. Production and Certification of the Reference Material GSB 04-3258-2015 as a 143Nd/144Nd Isotope Ratio Reference. Geostand. Geoanal. Res. 41, 255-262.Li, J.W., Bi, S.J., Selby, D., Chen, L., Vasconcelos, P., Thiede, D., Zhou, M.F., Zhao, X.F., Li, Z.K., Qiu, H.N., 2012b. Giant Mesozoic gold provinces related to the destruction of the North China craton. Earth Planet. Sci. Lett. 349, 26-37.Li, J.X., Qin, K.Z., Li, G.M., Evans, N.J., Huang, F., Zhao, J.X., 2018b. Iron isotope fractionation during magmatic-hydrothermal evolution: A case study from the Duolong porphyry Cu-Au deposit, Tibet. Geochim. Cosmochim. Acta 238, 1-15.Li, Q., Chen, F., Wang, X., Li, X., Li, C., 2005a. Ultra-low procedural blank and the single-grain mica Rb-Sr isochron dating. Chinese Science Bulletin 50, 2861-2865.Li, R., Chen, H., Large, R.R., Zhao, L., Liu, Y., Jiao, J., Xia, X.P., Yang, Q., 2020. Ore-forming fluid source of the orogenic gold deposit: Implications from a combined pyrite texture and geochemistry study. Chem. Geol. 552, 119781.Li, S., Kusky, T.M., Zhao, G., Wu, F., Liu, J.-Z., Sun, M., Wang, L., 2007. Mesozoic tectonics in the Eastern Block of the North China Craton: implications for subduction of the Pacific plate beneath the Eurasian plate. Geol. Soc. Spec. Publ. 280, 171-188.Li, S., Liu, X., Suo, Y., Liu, L., Qian, C., Liu, X., Zhang, G., Zhao, G., 2009. Triassic fold and thrusting in the Eastern Block of the North China Craton and the Dabie-Sulu orogen and its geodynamics. Acta Petrol. Sin. 25, 2031-2049 (in Chinese with English abstract).Li, S., Suo, Y.H., Santosh, M., Dai, L.M., Liu, X., Yu, S., Zhao, S.J., Jin, C., 2013a. Mesozoic to Cenozoic intracontinental deformation and dynamics of the North China Craton. Geol. J. 48, 543-560.Li, S., Zhao, G., Dai, L., Liu, X., Zhou, L., Santosh, M., Suo, Y., 2012c. Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton. J. Asian Earth Sci. 47, 64-79.Li, S., Zhao, G., Sun, M., Han, Z., Luo, Y., Hao, D., Xia, X., 2005b. Deformation history of the Paleoproterozoic Liaohe assemblage in the eastern block of the North China Craton. J. Asian Earth Sci. 24, 659-674.Li, S., Zhao, G., Sun, M., Han, Z., Zhao, G., Hao, D., 2006b. Are the South and North Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints. Gondwana Res. 9, 198-208.Li, X.-C., Fan, H.-R., Santosh, M., Hu, F.-F., Yang, K.-F., Lan, T.-G., 2013b. Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China. Ore Geol. Rev. 53, 403-421.Li, Z., Chen, B., 2014. Geochronology and geochemistry of the Paleoproterozoic meta-basalts from the Jiao-Liao-Ji Belt, North China Craton: Implications for petrogenesis and tectonic setting. Precambrian Res. 255, 653-667.Li, Z., Chen, B., Wei, C., 2017. Is the Paleoproterozoic Jiao-Liao-Ji Belt (North China Craton) a rift? Int. J. Earth Sci. 106, 355-375.Li, Z., Chen, B., Yan, X., 2019. The Liaohe Group: An insight into the Paleoproterozoic tectonic evolution of the Jiao–Liao–Ji Belt, North China Craton. Precambrian Res. 326, 174-195.Liaoning Wulong Gold Mining Co., L., 2015. Annual report on the mine reserves of the Wulong gold deposit from the Liaoning Wulong Gold Mining Co., Ltd.Liu, C., Zhu, G., Zhang, S., Gu, C., Li, Y., Su, N., Xiao, S., 2018a. Mesozoic strike-slip movement of the Dunhua–Mishan Fault Zone in NE China: A response to oceanic plate subduction. Tectonophysics 723, 201-222.Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., Shen, Q.H., 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339-342.Liu, F., Liu, P., Wang, F., Liu, C., Cai, J., 2015. Progress and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic/mobile belt, North China Craton. Acta Petrol. Sin. 31, 2816-2846 (in Chinese with English abstract).Liu, F., Wang, F., Liou, J.G., Meng, E., Liu, J., Yang, H., Xiao, L., Cai, J., Shi, J., 2014. Mid–Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao–Liao–Ji Belt, North China Craton: Evidence from monazite U–Th–Pb and muscovite Ar–Ar dating. J. Asian Earth Sci. 94, 205-225.Liu, J., Ji, M., Jinlong, N., Shen, L., Zheng, Y., Chen, X., Craddock, J., 2021a. Inhomogeneous thinning of a cratonic lithospheric keel by tectonic extension: The Early Cretaceous Jiaodong Peninsula−Liaodong Peninsula extensional provinces, eastern North China craton. GSA Bulletin 133, 159-176.Liu, J., Liu, F., Li, S., Lai, C., 2019a. Formation of the Baiyun gold deposit, Liaodong gold province, NE China: Constraints from zircon U–Pb age, fluid inclusion, and C–H–O–Pb–He isotopes. Ore Geol. Rev. 104, 686-706.Liu, J., Liu, F., Li, S., Lai, C., 2020a. Genesis of the Xiaotongjiapuzi gold deposit of the Liaodong gold province, Northeast China: Fluid inclusion thermometry and S–Pb–H–O–He isotope constraints. Geol. J. 55, 1023-1040.Liu, J., Wang, J., Liu, Y., Tian, J., Li, X., Zhang, H., 2018b. Ore genesis of the Xiadian gold deposit, Jiaodong Peninsula, East China: Information from fluid inclusions and mineralization. Geol. J. 53, 77-95.Liu, J., Zhang, L., Wang, S., Li, T., Yang, Y., Liu, F., Li, S., Duan, C., 2019b. Formation of the Wulong gold deposit, Liaodong gold Province, NE China: Constraints from zircon U–Pb age, sericite Ar–Ar age, and H–O–S–He isotopes. Ore Geol. Rev. 109, 130-143.Liu, S., Chen, B., Zheng, J., Bao, C., Zhao, G., 2021b. Genesis of the Xinfang Gold Deposit, Liaodong Peninsula: Insights from Fluid Inclusions and S-Sr Isotopic Constraints. J Earth Sci 32, 68-80.Liu, S., Chen, B., Zheng, J., Sun, Y., Bao, C., Zhao, G., 2022a. Lithium isotopic behaviour during high-temperature fluid-rock reactions of metapelites (>200 °C): A case study from the Baiyun orogenic gold deposit, Liaodong Peninsula, North China Craton. Chem. Geol. 611, 121121.Liu, S., Chen, B., Zheng, J., Wu, Y., Bao, C., Zhao, G., 2022b. A metamorphic devolatilization model for the genesis of the Baiyun gold deposit in the North China Craton: A novel Fe-S isotopes perspective. Gondwana Res. 106, 126-141.Liu, X., Xiao, C., Zhang, S., Hu, G., Li, J., Wang, C., 2020b. Whether Sanguliu granite provided energy required for forming Wulong gold deposit, Liaodong Province, China? Earth Science 45, 3998-4013 (in Chinese with English abstract).Lowell, J.D., Guilbert, J.M., 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol. 65, 373-408.Lu, Y., Xiao, Y., Nadeau, O., Yang, X., Wang, Y., Hou, Z., Sun, H., Li, D., Gu, H., Deng, J., Tong, F., Tan, D., Qi, H., Ibrahim Bute, S., 2021. Inherited source affinity of Li and Hf isotopes for porphyry copper deposits from subduction and collisional settings. Ore Geol. Rev. 138, 104328.Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 39, 349-357.Magna, T., Wiechert, U., Grove, T.L., Halliday, A.N., 2006. Lithium isotope fractionation in the southern Cascadia subduction zone. Earth Planet. Sci. Lett. 250, 428-443.Mansor, M., Fantle, M.S., 2019. A novel framework for interpreting pyrite-based Fe isotope records of the past. Geochim. Cosmochim. Acta 253, 39-62.Mao, J., Goldfarb, R.J., Zhang, Z., Xu, W., Qiu, Y., Deng, J., 2002a. Gold deposits in the Xiaoqinling–Xiong'ershan region, Qinling Mountains, central China. Mineral. Depos. 37, 306-325.Mao, J., Qiu, Y., Goldfarb, R.J., Zhang, Z., Garwin, S., Fengshou, R., 2002b. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China. Mineral. Depos. 37, 352-377.Mao, J., Wang, Y., Li, H., Pirajno, F., Zhang, C., Wang, R., 2008. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: evidence from D–O–C–S isotope systematics. Ore Geol. Rev. 33, 361-381.Marschall, H.R., Schumacher, J.C., 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geoscience 5, 862-867.Masukawa, K., Nishio, Y., Hayashi, K.-I., 2013. Lithium-strontium isotope and heavy metal content of fluid inclusions and origin of ore-forming fluid responsible for tungsten mineralization at Takatori mine, Japan. Geochem. J. 47, 309-319.Mathur, R., Titley, S., Barra, F., Brantley, S., Wilson, M., Phillips, A., Munizaga, F., Maksaev, V., Vervoort, J., Hart, G., 2009. Exploration potential of Cu isotope fractionation in porphyry copper deposits. J. Geochem. Explor. 102, 1-6.McCuaig, T.C., Kerrich, R., 1998. P–T–t–deformation–fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol. Rev. 12, 381-453.McCulloch, M.T., Gregory, R.T., Wasserburg, G.J., Taylor, H.P., 1980. A Neodymium, Strontium, and Oxygen isotopic study of the Cretaceous Samail ophiolite and implications for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth Planet. Sci. Lett. 46, 201-211.Menzies, M., Xu, Y., Zhang, H., Fan, W., 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos 96, 1-21.Menzies, M.A., Xu, Y., 1998. Geodynamics of the North China Craton, Mantle Dynamics and Plate Interactions in East Asia, pp. 155-165.Miao, L., Qiu, Y., Fan, W., Zhang, F., Zhai, M., 2005. Geology, geochronology, and tectonic setting of the Jiapigou gold deposits, southern Jilin Province, China. Ore Geol. Rev. 26, 137-165.Mikucki, E.J., 1998. Hydrothermal transport and depositional processes in Archean lode-gold systems: A review. Ore Geol. Rev. 13, 307-321.Misra, K., 2000. Understanding mineral deposits. Springer, Dordrecht, 845 pp.Moriguti, T., Nakamura, E., 1998. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet. Sci. Lett. 163, 167-174.Nadeau, O., Mick, E., Robidoux, P., Grassa, F., Brusca, L., Voinot, A., Leybourne, M.I., 2021a. Lithium isotopes and Cu-Au concentrations in hydrothermal alterations from Solfatara Volcano, Campi Flegrei caldera complex, and La Fossa volcano, Vulcano Island, Italy: Insights into epithermal ore forming environments. Ore Geol. Rev. 130, 103934.Nadeau, O., Voinot, A., Leybourne, M., 2021b. Lithium isotopes at gold deposits: Insights from the giant Kirkland Lake Gold Deposit, Canada. Precambrian Res. 362, 106308.Nesbitt, B.E., 1991. Phanerozoic gold deposits in tectonically active continental margins. In: Foster, R.P. (Ed.), Gold metallogeny and exploration. Springer US, Boston, MA, pp. 104-132.Nie, F., Jiang, S., Liu, Y., 2004. Intrusion-Related Gold Deposits of North China Craton, People's Republic of China. Resour. Geol. 54, 299-324.O'Neil, J.R., Taylor, H.P., Jr., 1967. The oxygen isotope and cation exchange chemistry of feldspars. Am. Mineral. 52, 1414-1437.O'Nions, R.K., Oxburgh, E.R., 1988. Helium, volatile fluxes and the development of continental crust. Earth Planet. Sci. Lett. 90, 331-347.Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 67, 551-578.Patten, C., Pitcairn, I., Molnar, F., Kolb, J., Beaudoin, G., Guilmette, C., Peillod, A., 2020. Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks. Geology 48, 1110-1114.Penniston-Dorland, S., Liu, X.-M., Rudnick, R.L., 2017. Lithium Isotope Geochemistry. Rev. Mineral. Geochem. 82, 165-217.Penniston-Dorland, S.C., Bebout, G.E., von Strandmann, P.A.P., Elliott, T., Sorensen, S.S., 2012. Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA. Geochim. Cosmochim. Acta 77, 530-545.Pettke, T., Diamond, L.W., Villa, I.M., 1999. Mesothermal gold veins and metamorphic devolatilization in the northwestern Alps: The temporal link. Geology 27, 641-644.Phillips, G.N., Powell, R., 2009. Formation of gold deposits: Review and evaluation of the continuum model. Earth Sci. Rev. 94, 1-21.Phillips, G.N., Powell, R., 2010. Formation of gold deposits: a metamorphic devolatilization model. J. Metamorph. Geol. 28, 689-718.Phillips, N., 2022. Formation of Gold Deposits. Modern Approaches in Solid Earth Sciences Springer, Singapore, XXVII, 291 pp.Phillips, N., Zhou, T., 1999. Gold-only Deposits and Archean Granite. SEG Discovery, 1-13.Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer Dordrecht, 1250 pp.Pirajno, F., Ernst, R.E., Borisenko, A.S., Fedoseev, G., Naumov, E.A., 2009. Intraplate magmatism in Central Asia and China and associated metallogeny. Ore Geol. Rev. 35, 114-136.Pitcairn, I.K., 2011. Background concentrations of gold in different rock types. Appl. Earth Sci. 120, 31-38.Pitcairn, I.K., Craw, D., Teagle, D.A.H., 2015. Metabasalts as sources of metals in orogenic gold deposits. Mineral. Depos. 50, 373-390.Pitcairn, I.K., Teagle, D.A.H., Craw, D., Olivo, G.R., Kerrich, R., Brewer, T.S., 2006. Sources of Metals and Fluids in Orogenic Gold Deposits: Insights from the Otago and Alpine Schists, New Zealand. Econ. Geol. 101, 1525-1546.Plank, T., 2014. 4.17 - The Chemical Composition of Subducting Sediments. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry (Second Edition). Elsevier, Oxford, pp. 607-629.Polyakov, V.B., Clayton, R.N., Horita, J., Mineev, S.D., 2007. Equilibrium iron isotope fractionation factors of minerals: Reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim. Cosmochim. Acta 71, 3833-3846.Powell, R., Will, T., Phillips, G., 1991. Metamorphism in Archaean greenstone belts: calculated fluid compositions and implications for gold mineralization. J. Metamorph. Geol. 9, 141-150.Qin, J., Liu, C., Chen, Y., Deng, J., 2019. Timing of Lithospheric Extension in Northeastern China: Evidence from the Late Mesozoic Nianzishan A-Type Granitoid Complex. J Earth Sci 30, 689-706.Qiu, K.-F., Deng, J., Laflamme, C., Long, Z.-Y., Wan, R.-Q., Moynier, F., Yu, H.-C., Zhang, J.-Y., Ding, Z.-J., Goldfarb, R., 2023. Giant Mesozoic gold ores derived from subducted oceanic slab and overlying sediments. Geochim. Cosmochim. Acta 343, 133-141.Qiu, L., Rudnick, R.L., Ague, J.J., McDonough, W.F., 2011a. A lithium isotopic study of sub-greenschist to greenschist facies metamorphism in an accretionary prism, New Zealand. Earth Planet. Sci. Lett. 301, 213-221.Qiu, L., Rudnick, R.L., McDonough, W.F., Bea, F., 2011b. The behavior of lithium in amphibolite- to granulite-facies rocks of the Ivrea–Verbano Zone, NW Italy. Chem. Geol. 289, 76-85.Qiu, Y., Groves, D.I., McNaughton, N.J., Wang, L., Zhou, T., 2002. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Mineral. Depos. 37, 283-305.Ridley, J., 2013. Ore Deposit Geology. Cambridge University Press, 398 pp.Ridley, J., Mikucki, E.J., Groves, D.I., 1996. Archean lode-gold deposits: fluid flow and chemical evolution in vertically extensive hydrothermal systems. Ore Geol. Rev. 10, 279-293.Ridley, J.R., Diamond, L., 2000. Fluid chemistry of lode-gold deposits, and implications for genetic models. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000. Society of Economic Geologists, pp. 141-162.Rustad, J.R., Dixon, D.A., 2009. Prediction of Iron-Isotope Fractionation Between Hematite (α-Fe2O3) and Ferric and Ferrous Iron in Aqueous Solution from Density Functional Theory. J. Phys. Chem. A 113, 12249-12255.Sartbaeva, A., Wells, S.A., Redfern, S.A.T., 2004. Li+ ion motion in quartz and β-eucryptite studied by dielectric spectroscopy and atomistic simulations. Journal of Physics: Condensed Matter 16, 8173-8189.Sauzéat, L., Rudnick, R.L., Chauvel, C., Garçon, M., Tang, M., 2015. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth Planet. Sci. Lett. 428, 181-192.Schauble, E.A., 2004. Applying Stable Isotope Fractionation Theory to New Systems. Rev. Mineral. Geochem. 55, 65-111.Seal, R.R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Mineral. Geochem. 61, 633-677.Seyfried, W.E., Chen, X., Chan, L.-H., 1998. Trace Element Mobility and Lithium Isotope Exchange During Hydrothermal Alteration of Seafloor Weathered Basalt: An Experimental Study at 350°C, 500 Bars. Geochim. Cosmochim. Acta 62, 949-960.Seyfried, W.E., Janecky, D.R., Mottl, M.J., 1984. Alteration of the oceanic crust: Implications for geochemical cycles of lithium and boron. Geochim. Cosmochim. Acta 48, 557-569.Sibson, R.H., Robert, F., Poulsen, K.H., 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 16, 551-555.Sillitoe, R.H., 2010. Porphyry Copper Systems. Econ. Geol. 105, 3-41.Song, M., Li, S., Santosh, M., Zhao, S., Yu, S., Yi, P., Cui, S., Lv, G., Xu, J., Song, Y., Zhou, M., 2015. Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geol. Rev. 65, 612-625.Sun, G., Zeng, Q., Li, T., Li, A., Wang, E., Xiang, C., Wang, Y., Chen, P., Yu, B., 2019. Ore genesis of the Baiyun gold deposit in Liaoning province, NE China: constraints from fluid inclusions and zircon U–Pb ages. Arab. J. Geosci 12, 299.Sun, G., Zeng, Q., Zhou, L., Wang, Y., Chen, P., 2020. Trace element contents and in situ sulfur isotope analyses of pyrite in the Baiyun gold deposit, NE China: Implication for the genesis of intrusion-related gold deposits. Ore Geol. Rev. 118, 103330.Sun, H., Gao, Y., Xiao, Y., Gu, H.o., Casey, J.F., 2016. Lithium isotope fractionation during incongruent melting: Constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China. Chem. Geol. 439, 71-82.Sun, J., 1999. Relations of gold abundance in geological bodies to genesis of gold deposits, Jiaodong. Contributions to Geology and Mineral Resources Research 14, 43-54 (in Chinese with English abstract).Sun, M., Armstrong, R.L., Lambert, R.S.J., Jiang, C., Wu, J., 1993. Petrochemistry and Sr, Pb and Nd isotopic geochemistry of the Paleoproterozoic Kuandian Complex, the eastern Liaoning province, China. Precambrian Res. 62, 171-190.Syverson, D.D., Borrok, D.M., Seyfried, W.E., 2013. Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions. Geochim. Cosmochim. Acta 122, 170-183.Tam, P.Y., Zhao, G., Sun, M., Li, S., Iizuka, Y., Ma, G.S.-K.i., Yin, C., He, Y., Wu, M., 2012. Metamorphic P–T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Res. 220-221, 177-191.Tan, J., Wei, J., He, H., Su, F., Li, Y., Fu, L., Zhao, S., Xiao, G., Zhang, F., Xu, J., Liu, Y., Stuart, F.M., Zhu, R., 2018. Noble gases in pyrites from the Guocheng-Liaoshang gold belt in the Jiaodong province: Evidence for a mantle source of gold. Chem. Geol. 480, 105-115.Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., Dragusanu, C., 2000. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279-281.Tang, J., Zheng, Y.-F., Wu, Y.-B., Gong, B., 2006. Zircon SHRIMP U–Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogen: Implication for tectonic affinity. Precambrian Res. 144, 1-18.Tang, M., Rudnick, R.L., Chauvel, C., 2014. Sedimentary input to the source of Lesser Antilles lavas: A Li perspective. Geochim. Cosmochim. Acta 144, 43-58.Taylor, H., 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 69, 843-883.Taylor, H.P., 1977. Water/rock interactions and the origin of H2O in granitic batholiths. J. Geol. Soc. 133, 509-558.Teng, F.-Z., McDonough, W.F., Rudnick, R.L., Walker, R.J., 2006a. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet. Sci. Lett. 243, 701-710.Teng, F.-Z., McDonough, W.F., Rudnick, R.L., Wing, B.A., 2007. Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: a case study from the Onawa contact aureole, Maine. Chem. Geol. 239, 1-12.Teng, F., Mcdonough, W.F., Rudnick, R.L., Walker, R.J., Sirbescu, M.C., 2006b. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am. Mineral. 91, 1488-1498.Thirlwall, M.F., 1991. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chemical Geology: Isotope Geoscience section 94, 85-104.Tomascak, P.B., 2016. Adcances in Lithium Isotope Geochemistry. Advances in Isotope Geochemistry. Elsevier, Oxford.Tomascak, P.B., Langmuir, C.H., le Roux, P.J., Shirey, S.B., 2008. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta 72, 1626-1637.Tomkins, A.G., 2010. Windows of metamorphic sulfur liberation in the crust: Implications for gold deposit genesis. Geochim. Cosmochim. Acta 74, 3246-3259.Tomkins, A.G., 2013. On the source of orogenic gold. Geology 41, 1255-1256.Wan, Y., Liu, S., Xie, H., Dong, C., Li, Y., Bai, W., Liu, D., 2018. Formation and evolution of the Archean continental crust of China: A review. China Geology 1, 109-136.Wang, C.Y., Wei, B., Tan, W., Wang, Z., Zeng, Q., 2021a. The distribution, characteristics and fluid sources of lode gold deposits: An overview. Sci. China Earth Sci. 64, 1463-1480.Wang, Q., Yang, L., Zhao, H., Groves, D.I., Weng, W., Xue, S., Li, H., Dong, C., Yang, L., Li, D., Deng, J., 2022. Towards a universal model for orogenic gold systems: A perspective based on Chinese examples with geodynamic, temporal, and deposit-scale structural and geochemical diversity. Earth Sci. Rev. 224, 103861.Wang, Z., Cheng, H., Zong, K., Geng, X., Liu, Y., Yang, J., Wu, F., Becker, H., Foley, S., Wang, C.Y., 2019. Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton. Geology 48, 169-173.Wang, Z., Xu, Z., Cheng, H., Zou, Y., Guo, J., Liu, Y., Yang, J., Zong, K., Xiong, L., Hu, Z., 2021b. Precambrian metamorphic crustal basement cannot provide much gold to form giant gold deposits in the Jiaodong Peninsula, China. Precambrian Res. 354, 106045.Wei, J.-H., Liu, C.-Q., Tang, H.-F., 2003. Rb-Sr and U-Pb isotopic systematics of pyrite and granite in Liaodong gold province, North China: Implication for the age and genesis of a gold deposit. Geochem. J. 37, 567-577.Wei, J., Wang, E., Liu, F., Wang, W., 2019. Geological characteristics, ore genesis and prospecting direction of Baiyun gold belt in Fengcheng City, Liaoning Province. Metal Mine 518, 126-136 (in Chinese with English abstract).Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M., Mahoney, J.B., 2006. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, Q08006.Williams-Jones, A.E., Bowell, R.J., Migdisov, A.A., 2009. Gold in solution. Elements 5, 281-287.Willman, C.E., Korsch, R.J., Moore, D.H., Cayley, R.A., Lisitsin, V.A., Rawling, T.J., Morand, V.J., O’Shea, P.J., 2010. Crustal-Scale Fluid Pathways and Source Rocks in the Victorian Gold Province, Australia: Insights from Deep Seismic Reflection Profiles. Econ. Geol. 105, 895-915.Wu, F., Lin, J., Wilde, S.A., Zhang, X.O., Yang, J., 2005a. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 233, 103-119.Wu, F., Yang, J., Wilde, S.A., Zhang, X.-O., 2005b. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chem. Geol. 221, 127-156.Wu, F., Yang, J., Xu, Y., Wilde, S.A., Walker, R.J., 2019a. Destruction of the North China Craton in the Mesozoic. Annu Rev Earth Planet Sci 47, 173-195.Wu, Y., Evans, K., Li, J., Fougerouse, D., Large, R.R., Guagliardo, P., 2019b. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit. Geochim. Cosmochim. Acta 245, 98-117.Wu, Y., Li, J., Evans, K., Koenig, A.E., Li, Z., O’Brien, H., Lahaye, Y., Rempel, K., Hu, S., Zhang, Z., Yu, J., 2018. Ore-Forming Processes of the Daqiao Epizonal Orogenic Gold Deposit, West Qinling Orogen, China: Constraints from Textures, Trace Elements, and Sulfur Isotopes of Pyrite and Marcasite, and Raman Spectroscopy of Carbonaceous Material. Econ. Geol. 113, 1093-1132.Wunder, B., Meixner, A., Romer, R.L., Feenstra, A., Schettler, G., Heinrich, W., 2007. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chem. Geol. 238, 277-290.Wunder, B., Meixner, A., Romer, R.L., Heinrich, W., 2006. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib. Mineral. Petrol. 151, 112-120.Wyman, D., Kerrich, R., 1989. Archean Shoshonitic Lamprophyres Associated with Superior Province Gold Deposits: Distribution, Tectonic Setting, Noble Metal Abundances, and Significance for Gold Mineralization, The Geology of Gold Deposits: The Perspective in 1988. Society of Economic Geologists, pp. 651-667.Wyman, D.A., Cassidy, K.F., Hollings, P., 2016. Orogenic gold and the mineral systems approach: Resolving fact, fiction and fantasy. Ore Geol. Rev. 78, 322-335.Xiang, L., Romer, R.L., Glodny, J., Trumbull, R.B., Wang, R., 2020. Li and B isotopic fractionation at the magmatic-hydrothermal transition of highly evolved granites. Lithos 376-377, 105753.Xiao, S., Zhu, G., Zhang, S., Liu, C., Su, N., Yin, H., Wu, X., Li, Y., 2018. Structural processes and dike emplacement mechanism in the Wulong gold field, eastern LIaoning. China Science Bulletin 63, 3022-3036 (in Chinese with English abstract).Xu, Z., Li, H., Wang, Z., Li, D., 1991. Crustal contraction and extension in Southern Liaoning. Geological Review 37, 193-202 (in Chinese with English abstract).Yan, D.P., Zhou, M.F., Song, H.L., Wang, G.H., Sun, M., 2006. Mesozoic extensional structures of the Fangshan tectonic dome and their subsequent reworking during collisional accretion of the North China Block. Journal of the Geological Society 163, 127-142.Yang, D., Hou, Z., Zhao, Y., Hou, K., Yang, Z., Tian, S., Fu, Q., 2015. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system. Scientific Reports 5, 13812.Yang, J.-H., Wu, F.-Y., Wilde, S.A., Liu, X.-M., 2007. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem. Geol. 242, 155-175.Yang, J., Wu, F., Wilde, S.A., 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geol. Rev. 23, 125-152.Yang, J., Zhou, X., 2001. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology 29, 711-714.Yang, T.N., Peng, Y., Leech, M.L., Lin, H.Y., 2011. Fold patterns indicating Triassic constrictional deformation on the Liaodong peninsula, eastern China, and tectonic implications. J. Asian Earth Sci. 40, 72-83.Yardley, B.W., Cleverley, J.S., 2013. The role of metamorphic fluids in the formation of ore deposits. Geol. Soc. Spec. Publ. 393, 117-134.Young, E.D., Galy, A., Nagahara, H., 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66, 1095-1104.Yu, B., Zeng, Q., Frimmel, H.E., Qiu, H., Li, Q., Yang, J., Wang, Y., Zhou, L., Chen, P., Li, J., 2020. The 127 Ma gold mineralization in the Wulong deposit, Liaodong Peninsula, China: Constraints from molybdenite Re-Os, monazite U-Th-Pb, and zircon U-Pb geochronology. Ore Geol. Rev. 121, 103542.Yu, B., Zeng, Q., Frimmel, H.E., Wang, Y., Guo, W., Sun, G., Zhou, T., Li, J., 2018. Genesis of the Wulong gold deposit, northeastern North China Craton: Constraints from fluid inclusions, H-O-S-Pb isotopes, and pyrite trace element concentrations. Ore Geol. Rev. 102, 313-337.Yu, B., Zeng, Q., Frimmel, H.E., Zhou, L., Mcclenaghan, S.H., Drakou, F., Wang, Y., Chen, P., Yu, C., 2021. A magmatic-hydrothermal origin of the Xinfang gold deposit, Liaodong Peninsula, China, revealed by in-situ S–Pb isotopes and trace element analyses of pyrite. Resour. Geol. 71, 144-160.Yu, G., Chen, J., Xue, C., Chen, Y., Chen, F., Du, X., 2009. Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb–Zn–Ag–Au orefield, Northeastern China. Ore Geol. Rev. 35, 367-382.Yu, G., Yang, G., Chen, J., Qu, W., Du, A., He, W., 2005. Re-Os age of gold bearing arsenopyite from Maoling gold deposit in eastern Liaoning Province and its geological significance. Chinese Science Bulletin 50, 1248-1252.Zack, T., Tomascak, P.B., Rudnick, R.L., Dalpé, C., McDonough, W.F., 2003. Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet. Sci. Lett. 208, 279-290.Zeng, Q., Chen, R., Yang, J., Sun, G., Yu, B., Wang, Y., Chen, P., 2019. The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province. Acta Petrol. Sin. 35, 1939-1963 (in Chinese with English abstract).Zhai, M., Fan, H., Yang, J., Miao, L., 2004. Large-scale cluster of gold deposits in east Shandong: Anorogenic metallogenesis. Earth Science Frontiers 11, 85-98.Zhai, M., Peng, P., 2007. Paleoproteroic events in the North China Craton. Acta Petrol. Sin. 23, 2665-2682 (in Chinese with English abstract).Zhai, M., Santosh, M., 2013. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 24, 275-297.Zhang, H., Tian, S., Wang, D., Li, X., Liu, T., Zhang, Y., Fu, X., Hao, X., Hou, K., Zhao, Y., Qin, Y., 2021. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite–pegmatite deposit, Sichuan, China. Ore Geol. Rev. 134, 104139.Zhang, J., Liu, H., Shi, X., Jin, G., LI, J., Zhang, J., Han, J., Guo, D., Zhong, F., 2019a. Study on influence factors for determination of oxygen isotopic composition of silicates and oxide minerals by BrF5 method. Rock and Mineral Analysis 38, 45-54 (in Chinese with English abstract).Zhang, P., Kou, L., Zhao, Y., Bi, Z., Sha, D., Han, R., Li, Z., 2020a. Genesis of the Wulong gold deposit, Liaoning Province, NE China: Constrains from noble gases, radiogenic and stable isotope studies. Geosci. Front. 11, 547-563.Zhang, P., Kou, L.L., Zhao, Y., Bi, Z.W., Sha, D.M., Li, Z.M., Han, R.P., 2019b. Fluid inclusions, H-O, S, Pb, and noble gas isotope studies of the Baiyun gold deposit in the Qingchengzi orefield, NE China. J. Geochem. Explor. 200, 37-53.Zhang, P., Li, B., Li, J., Cai, P., Wang, X., Sha, D., Shi, J., 2016a. Re-Os dating and its geological implication of gold bearing pyrite from the Baiyun gold deposit in Liaodong rift. Geotectonica et Metallogenia, 731-738 (in Chinese with English abstract).Zhang, P., Zhao, Y., Kou, L., Yang, H., 2016b. Zircon U-Pb dating and its geological significance of lamprophyres from Qingchengzi ore field, Liaodong. Journal of Northeastern University (Natural Science) 37, 1056-1060 (in Chinese with English abstract).Zhang, P., Zhao, Y., Kou, L., Yang, H.z., Sha, D., Yang, Z., Zhang, J., Yu, C., 2022a. Genesis of the Xinfang magmatic-hydrothermal gold deposit, Liaodong Peninsula, China: Constraints from pyrite Re-Os isotopes, C, O, S, Pb, Si, He and Ar isotopes. Ore Geol. Rev. 148, 105025.Zhang, Q., 1988. Early proterozoic tectonic styles and associated mineral deposits of the North China Platform. Precambrian Res. 39, 1-29.Zhang, S., Hu, G., Li, J., Xiao, C., Liu, X., Zhang, Q., Yao, X., Liu, F., Wang, W., Chen, Z., Zhang, Q., 2020b. Ore-controlling structures and metallogeic favorable area prediction in Baiyun-Xiaotongjiapuzi ore concentration area, eastern Liaoning Province. Earth Science 45, 3885-3899 (in Chinese with English abstract).Zhang, S., Zhang, Q., Hu, G., Li, J., Xiao, C., Liu, X., Wang, S., 2022b. Comparison of mineralization and preservation conditions in the Wulong and Qingchengzi ore concentration areas, eastern Liaoning Province: implications for deep metallogenic prediction. Acta Geol. Sin. 96, 232-248 (in Chinese with English abstract).Zhang, S., Zhao, Y., Davis, G.A., Ye, H., Wu, F., 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth Sci. Rev. 131, 49-87.Zhang, S., Zhu, G., Liu, C., Li, Y., Su, N., Xiao, S., Gu, C., 2018. Strike-Slip Motion Within the Yalu River Fault Zone, NE Asia: The Development of a Shear Continental Margin. Tectonics 37, 1771-1796.Zhang, S., Zhu, G., Xiao, S., Su, N., Liu, C., Wu, X., Yin, H., Li, Y., Lu, Y., 2020c. Temporal variations in the dynamic evolution of an overriding plate: Evidence from the Wulong area in the eastern North China Craton, China. GSA Bulletin.Zhang, Y., Dong, S., Zhao, Y., Zhang, T., 2007. Jurassic tectonics of North China: a synthetic view. Acta Geol. Sin. 81, 1462-1480 (in Chinese with English abstract).Zhang, Y., Yao, F., 2013. Discovery and Significance of Si-K Altered Rock Type Gold Deposit in Baiyun Gold deposit. Northwestern Geology 46, 122-128 (in Chinese with English abstract).Zhang, Z., Wang, G., Carranza, E.J.M., Zhang, J., Tao, G., Zeng, Q., Sha, D., Li, D., Shen, J., Pang, Z., 2019c. Metallogenic model of the Wulong gold district, China, and associated assessment of exploration criteria based on multi-scale geoscience datasets. Ore Geol. Rev. 114, 103138.Zhao, G., 2014. Precambrian Evolution of the North China Craton. Elsevier, 194 pp.Zhao, G., Cawood, P.A., Li, S., Wilde, S.A., Sun, M., Zhang, J., He, Y., Yin, C., 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res. 222-223, 55-76.Zhao, G., Cawood, P.A., Wilde, S.A., Sun, M., 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 59, 125-162.Zhao, G., Sun, M., Wilde, S.A., Sanzhong, L., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res. 136, 177-202.Zhao, G., Zhai, M., 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res. 23, 1207-1240.Zhao, H., Chen, B., Huang, C., Bao, C., Yang, Q., Cao, R., 2022. Geochemical and Sr–Nd–Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: implications for Li mineralization. Contrib. Mineral. Petrol. 177, 4.Zhao, H., Yang, S., Li, H., 2009. Geological features of Baiyun gold ore deposit and discussion of the genesis. Non-ferrous Mining and Metallurgy 25, 4-7 (in Chinese with English abstract).Zheng, J., Chen, B., Liu, S., Bao, C., 2021. Iron isotope fractionation in reduced hydrothermal gold deposits: A case study from the Wulong gold deposit, Liaodong Peninsula, East China. Am. Mineral. 106, 430-442.Zheng, J., Chen, B., Liu, S., Bao, C., 2022a. A Triassic orogenic gold mineralization event in the Paleoproterozoic metamorphic rocks: Evidence from two types of rutile in the Baiyun gold deposit, Liaodong Peninsula, North China Craton. Econ. Geol. 117, 1657-1673.Zheng, J., Shen, P., Feng, W., 2022b. Hydrothermal apatite record of ore-forming processes in the Hatu orogenic gold deposit, West Junggar, Northwest China. Contrib. Mineral. Petrol. 177, 27.Zhong, R., Brugger, J., Tomkins, A.G., Chen, Y., Li, W., 2015. Fate of gold and base metals during metamorphic devolatilization of a pelite. Geochim. Cosmochim. Acta 171, 338-352.Zhou, G., Wang, Y., Li, D., Shi, Y., Xie, H., 2017. LA-ICP-MS Zircon U-Pb Dating of Dykes from the Baiyun Gold Deposit in Eastern Liaoning. Bull. Mineral. Petrol. Geochemistry 36, 620-627 (in Chinese with English abstract).Zhou, T., Goldfarb, R.J., 2002. Tectonics and metallogeny of gold deposits in China. Mineral. Depos. 37, 247-248.Zhou, X.M., Sun, T., Shen, W., Shu, L., Niu, Y., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. International Union of Geological Sciences 29, 26-33.Zhu, G., Jiang, D., Zhang, B., Chen, Y., 2012a. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res. 22, 86-103.Zhu, G., Liu, C., Gu, C., Zhang, S., Li, Y., Su, N., Xiao, S., 2018a. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu Fault Zone. Sci. China Earth Sci. 61, 386-405.Zhu, G., Liu, G.S., Niu, M.L., Xie, C.L., Wang, Y.S., Xiang, B., 2009. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. Int. J. Earth Sci. 98, 135-155.Zhu, G., Lu, Y., Su, N., Wu, X., Yin, H., Zhang, S., Xie, C., Niu, M., 2021. Crustal deformation and dynamics of Early Cretaceous in the North China Craton. Sci. China Earth Sci. 64, 1428-1450.Zhu, R.-X., Yang, J.-H., Wu, F.-Y., 2012b. Timing of destruction of the North China Craton. Lithos 149, 51-60.Zhu, R., Fan, H., Li, J., Meng, Q., Li, S., Zeng, Q., 2015. Decratonic gold deposits. Sci. China Earth Sci. 58, 1523-1537.Zhu, X., O'Nions, R.K., Guo, Y., Reynolds, B.C., 2000. Secular Variation of Iron Isotopes in North Atlantic Deep Water. Science 287, 2000-2002.Zhu, X.K., Guo, Y., Williams, R.J.P., O’Nions, R.K., Matthews, A., Belshaw, N.S., Canters, G.W., de Waal, E.C., Weser, U., Burgess, B.K., Salvato, B., 2002. Mass fractionation processes of transition metal isotopes. Earth Planet. Sci. Lett. 200, 47-62.Zhu, Z., Cook, N.J., Yang, T., Ciobanu, C.L., Zhao, K., Jiang, S., 2016. Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS: potential analytical problems, improvements and implications. Minerals 6, 110.Zhu, Z., Jiang, S., Mathur, R., Cook, N.J., Yang, T., Wang, M., Ma, L., Ciobanu, C.L., 2018b. Iron isotope behavior during fluid/rock interaction in K-feldspar alteration zone–A model for pyrite in gold deposits from the Jiaodong Peninsula, East China. Geochim. Cosmochim. Acta 222, 94-116. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553187 |
专题 | 理学院_地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Liu SJ. THE GENESIS OF THE OROGENIC GOLD DEPOSITS IN THE LIAODONG PENINSULA, NORTH CHINA CRATON[D]. 香港. 香港大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11950001-刘帅杰-地球与空间科学(10412KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[刘帅杰]的文章 |
百度学术 |
百度学术中相似的文章 |
[刘帅杰]的文章 |
必应学术 |
必应学术中相似的文章 |
[刘帅杰]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论