中文版 | English
题名

DMINet: A lightweight dual-mixed channel-independent network for cataract recognition

作者
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
卷号
2023-June
页码
1-8
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Cataracts are the leading cause of visual impairment and blindness globally, attracting abroad attention from society. Over the years, researchers have developed many state-of-the-art convolutional neural networks (CNNs) to recognize cataract severity levels based on different ophthalmic images. However, most current works focus on improving cataract recognition performance by designing complex CNNs, often ignoring resource-constrained medical device limitations. To this problem, this paper proposes a novel dual-mixed channel-independent convolution (DMIConv) method, which takes advantage of the multiscale convolution kernels by combining a depthwise convolution with a depthwise dilated convolution sequentially. Moreover, we build a lightweight dual-mixed channel-independent network (DMINet) to recognize cataracts. To verify the effectiveness and efficiency of DMINet, we conduct extensive experiments on a clinical anterior segment optical coherence tomography (AS-OCT) dataset of nuclear cataract (NC) and a publicly available OCT dataset. The results show that our proposed DMINet keeps a better tradeoff between the model complexity and the classification performance than efficient CNNs, e.g., DMINet outperforms MixNet by 3.34% of accuracy by using 4.58% fewer parameters.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[82272086]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198702002
EI入藏号
20233614678500
EI主题词
Complex networks ; Convolutional neural networks ; Medical imaging ; Optical tomography
EI分类号
Biomedical Engineering:461.1 ; Information Theory and Signal Processing:716.1 ; Computer Systems and Equipment:722 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191292
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553190
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xiao Wu,Yu Chen,Qiuyang Yan,et al. DMINet: A lightweight dual-mixed channel-independent network for cataract recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao Wu]的文章
[Yu Chen]的文章
[Qiuyang Yan]的文章
百度学术
百度学术中相似的文章
[Xiao Wu]的文章
[Yu Chen]的文章
[Qiuyang Yan]的文章
必应学术
必应学术中相似的文章
[Xiao Wu]的文章
[Yu Chen]的文章
[Qiuyang Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。