题名 | DMINet: A lightweight dual-mixed channel-independent network for cataract recognition |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-8868-6
|
会议录名称 | |
卷号 | 2023-June
|
页码 | 1-8
|
会议日期 | 18-23 June 2023
|
会议地点 | Gold Coast, Australia
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Cataracts are the leading cause of visual impairment and blindness globally, attracting abroad attention from society. Over the years, researchers have developed many state-of-the-art convolutional neural networks (CNNs) to recognize cataract severity levels based on different ophthalmic images. However, most current works focus on improving cataract recognition performance by designing complex CNNs, often ignoring resource-constrained medical device limitations. To this problem, this paper proposes a novel dual-mixed channel-independent convolution (DMIConv) method, which takes advantage of the multiscale convolution kernels by combining a depthwise convolution with a depthwise dilated convolution sequentially. Moreover, we build a lightweight dual-mixed channel-independent network (DMINet) to recognize cataracts. To verify the effectiveness and efficiency of DMINet, we conduct extensive experiments on a clinical anterior segment optical coherence tomography (AS-OCT) dataset of nuclear cataract (NC) and a publicly available OCT dataset. The results show that our proposed DMINet keeps a better tradeoff between the model complexity and the classification performance than efficient CNNs, e.g., DMINet outperforms MixNet by 3.34% of accuracy by using 4.58% fewer parameters. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[82272086]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:001046198702002
|
EI入藏号 | 20233614678500
|
EI主题词 | Complex networks
; Convolutional neural networks
; Medical imaging
; Optical tomography
|
EI分类号 | Biomedical Engineering:461.1
; Information Theory and Signal Processing:716.1
; Computer Systems and Equipment:722
; Optical Devices and Systems:741.3
; Imaging Techniques:746
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191292 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553190 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Xiao Wu,Yu Chen,Qiuyang Yan,et al. DMINet: A lightweight dual-mixed channel-independent network for cataract recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论