中文版 | English
题名

Fairer Machine Learning Through the Hybrid of Multi-objective Evolutionary Learning and Adversarial Learning

作者
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
卷号
2023-June
页码
1-9
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

With growing concerns about the unwanted bias or discrimination in machine learning, a number of fairness-aware machine learning algorithms have been developed to mitigate bias in the prediction. Because the objectives of accuracy and fairness are antagonistic, it is hard to balance the trade-off between them. Recently, Multi-objective Evolutionary Learning (MOEL) framework has been proposed to train a set of Pareto models with the consideration of accuracy and fairness simultaneously. However, this framework prefers to train more accurate models rather than fairer models due to the lack of gradient in terms of fairness. In this paper, MOEL is enhanced through introducing Adversarial Learning (AL). The MOEL-AL framework aims to maximize a set of predictors' ability to predict true labels and minimize the ability of an adversarial network to predict the sensitive attributes from the predictors' output. Specifically, the adversarial network can be regarded as a proxy of the undifferentiable fairness metrics, so it is possible to propagate gradients in terms of both accuracy and fairness for the predictors during the back-propagation process. Besides, the adversarial strength for different predictors is adjusted dynamically according to their fairness metric. Compared with the state-of-the-art methods, experimental studies on seven well-known datasets show that our method can provide a set of fairer Pareto models with little drop on accuracy.

关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198706018
EI入藏号
20233614678860
EI主题词
Backpropagation ; Economic and social effects ; Evolutionary algorithms ; Forecasting ; Learning systems
EI分类号
Artificial Intelligence:723.4 ; Optimization Techniques:921.5 ; Social Sciences:971
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191821
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553191
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems (RITAS), Southern University of Science and Technology (SUSTech), Shenzhen, China
2.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology (SUSTech), Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Shenhao Gui,Qingquan Zhang,Changwu Huang,et al. Fairer Machine Learning Through the Hybrid of Multi-objective Evolutionary Learning and Adversarial Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-9.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Fairer Machine Learn(2343KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shenhao Gui]的文章
[Qingquan Zhang]的文章
[Changwu Huang]的文章
百度学术
百度学术中相似的文章
[Shenhao Gui]的文章
[Qingquan Zhang]的文章
[Changwu Huang]的文章
必应学术
必应学术中相似的文章
[Shenhao Gui]的文章
[Qingquan Zhang]的文章
[Changwu Huang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Fairer Machine Learning Through the Hybrid of Multi-objective Evolutionary Learning and Adversarial Learning.pdf
格式: Adobe PDF
文件名: Fairer Machine Learning Through the Hybrid of Multi-objective Evolutionary Learning and Adversarial Learning.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。