中文版 | English
题名

Evolving Constrained Reinforcement Learning Policy

作者
通讯作者Jialin Liu
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
页码
1-8
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Evolutionary algorithms have been used to evolve a population of actors to generate diverse experiences for training reinforcement learning agents, which helps to tackle the temporal credit assignment problem and improves the exploration efficiency. However, when adapting this approach to address constrained problems, balancing the trade-off between the reward and constraint violation is hard. In this paper, we propose a novel evolutionary constrained reinforcement learning (ECRL) algorithm, which adaptively balances the reward and constraint violation with stochastic ranking, and at the same time, restricts the policy's behaviour by maintaining a set of Lagrange relaxation coefficients with a constraint buffer. Extensive experiments on robotic control benchmarks show that our ECRL achieves outstanding performance compared to state-of-the-art algorithms. Ablation analysis shows the benefits of introducing stochastic ranking and constraint buffer.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198707051
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191982
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553192
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems (RITAS), Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院
通讯作者单位计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Chengpeng Hu,Jiyuan Pei,Jialin Liu,et al. Evolving Constrained Reinforcement Learning Policy[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chengpeng Hu]的文章
[Jiyuan Pei]的文章
[Jialin Liu]的文章
百度学术
百度学术中相似的文章
[Chengpeng Hu]的文章
[Jiyuan Pei]的文章
[Jialin Liu]的文章
必应学术
必应学术中相似的文章
[Chengpeng Hu]的文章
[Jiyuan Pei]的文章
[Jialin Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。