中文版 | English
题名

Constrained Reinforcement Learning for Dynamic Material Handling

作者
通讯作者Jialin Liu
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
页码
1-9
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

As one of the core parts of flexible manufacturing systems, material handling involves storage and transportation of materials between workstations with automated vehicles. The improvement in material handling can impulse the overall efficiency of the manufacturing system. However, the occurrence of dynamic events during the optimisation of task arrangements poses a challenge that requires adaptability and effectiveness. In this paper, we aim at the scheduling of automated guided vehicles for dynamic material handling. Motivated by some real-world scenarios, unknown new tasks and unexpected vehicle breakdowns are regarded as dynamic events in our problem. We formulate the problem as a constrained Markov decision process which takes into account tardiness and available vehicles as cumulative and instantaneous constraints, respectively. An adaptive constrained reinforcement learning algorithm that combines Lagrangian relaxation and invalid action masking, named RCPOM, is proposed to address the problem with two hybrid constraints. Moreover, a gym-like dynamic material handling simulator, named DMH-GYM, is developed and equipped with diverse problem instances, which can be used as benchmarks for dynamic material handling. Experimental results on the problem instances demonstrate the outstanding performance of our proposed approach compared with eight state-of-the-art constrained and non-constrained reinforcement learning algorithms, and widely used dispatching rules for material handling.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198707066
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191999
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553193
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems (RITAS), Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
3.Trustworthiness Theory Research Center, Huawei Technologies Co., Ltd, Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院
通讯作者单位计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Chengpeng Hu,Ziming Wang,Jialin Liu,et al. Constrained Reinforcement Learning for Dynamic Material Handling[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-9.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chengpeng Hu]的文章
[Ziming Wang]的文章
[Jialin Liu]的文章
百度学术
百度学术中相似的文章
[Chengpeng Hu]的文章
[Ziming Wang]的文章
[Jialin Liu]的文章
必应学术
必应学术中相似的文章
[Chengpeng Hu]的文章
[Ziming Wang]的文章
[Jialin Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。