中文版 | English
题名

Feature Attribution Explanation to Detect Harmful Dataset Shift

作者
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
页码
1-8
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Detecting whether a distribution shift has occurred in the dataset is a critical aspect when implementing machine learning models, as even a small shift in the data distribution may largely affect the performance of a machine learning model and thus cause the deployed model to fail. In this work, we focus on detecting harmful dataset shifts, i.e., shifts that are detrimental to the performance of the machine learning model. The existing methods usually detect whether there is a shift between two datasets according to the following framework: first carrying out dimensionality reduction on the datasets, then determining whether dataset shift exists according to the two-sample statistical test(s) on the reduced datasets. The knowledge contained in the model trained on the dataset is not utilized in the above described dataset shift detection framework. To address this, this paper proposes to take advantage of explainable artificial intelligence (XAI) techniques to exploit the knowledge in trained models when detecting harmful dataset shifts. Specifically, we employ the feature attribution explanation (FAE) method to capture the knowledge in the model and combine it with a widely-used two-sample test method, i.e., maximum mean difference (MMD), to detect harmful dataset shifts. The experimental results on more than twenty different shifts in three widely used image datasets demonstrate that the proposed method is more effective in identifying harmful dataset shifts than existing methods. Moreover, experiments on several different models show that the method is robust and effective over different models, i.e., its detection performance is not sensitive to the model used.

关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[62250710682]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198701058
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191221
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553195
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems (RITAS),Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位斯发基斯可信自主系统研究院
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Ziming Wang,Changwu Huang,Xin Yao. Feature Attribution Explanation to Detect Harmful Dataset Shift[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-8.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Feature Attribution (3269KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
[Xin Yao]的文章
百度学术
百度学术中相似的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
[Xin Yao]的文章
必应学术
必应学术中相似的文章
[Ziming Wang]的文章
[Changwu Huang]的文章
[Xin Yao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Feature Attribution Explanation to Detect Harmful Dataset Shift.pdf
格式: Adobe PDF
文件名: Feature Attribution Explanation to Detect Harmful Dataset Shift.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。