题名 | Feature Attribution Explanation to Detect Harmful Dataset Shift |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-8868-6
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 18-23 June 2023
|
会议地点 | Gold Coast, Australia
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Detecting whether a distribution shift has occurred in the dataset is a critical aspect when implementing machine learning models, as even a small shift in the data distribution may largely affect the performance of a machine learning model and thus cause the deployed model to fail. In this work, we focus on detecting harmful dataset shifts, i.e., shifts that are detrimental to the performance of the machine learning model. The existing methods usually detect whether there is a shift between two datasets according to the following framework: first carrying out dimensionality reduction on the datasets, then determining whether dataset shift exists according to the two-sample statistical test(s) on the reduced datasets. The knowledge contained in the model trained on the dataset is not utilized in the above described dataset shift detection framework. To address this, this paper proposes to take advantage of explainable artificial intelligence (XAI) techniques to exploit the knowledge in trained models when detecting harmful dataset shifts. Specifically, we employ the feature attribution explanation (FAE) method to capture the knowledge in the model and combine it with a widely-used two-sample test method, i.e., maximum mean difference (MMD), to detect harmful dataset shifts. The experimental results on more than twenty different shifts in three widely used image datasets demonstrate that the proposed method is more effective in identifying harmful dataset shifts than existing methods. Moreover, experiments on several different models show that the method is robust and effective over different models, i.e., its detection performance is not sensitive to the model used. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62250710682]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:001046198701058
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191221 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553195 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems (RITAS),Southern University of Science and Technology, Shenzhen, China 2.Department of Computer Science and Engineering, Guangdong Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Ziming Wang,Changwu Huang,Xin Yao. Feature Attribution Explanation to Detect Harmful Dataset Shift[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-8.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Feature Attribution (3269KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论